2021
Authors
Soares, S; Campos, C; Leitao, JM; Lobo, A; Couto, A; Ferreira, S;
Publication
SUSTAINABILITY
Abstract
Driver distraction is a major problem nowadays, contributing to many deaths, injuries, and economic losses. Despite the effort that has been made to minimize these impacts, considering the technological evolution, distraction at the wheel has tended to increase. Not only tech-related tasks but every task that captures a driver's attention has impacts on road safety. Moreover, driver behavior and characteristics are known to be heterogeneous, leading to a distinct driving performance, which is a challenge in the road safety perspective. This study aimed to capture the effects of drivers' personal aspects and habits on their distraction behavior. Following a within-subjects approach, a convenience sample of 50 drivers was exposed to three unexpected events reproduced in a driving simulator. Drivers' reactions were evaluated through three distinct models: a Lognormal Model to make analyze the visual distraction, a Binary Logit Model to explore the adopted type of reaction, and a Parametric Survival Model to study the reaction times. The research outcomes revealed that drivers' behavior and perceived workload were distinct when they were engaged in specific secondary tasks and for distinct drivers' personal attributes and habits. Age and type of distraction showed statistical significance regarding the visual behavior. Moreover, reaction times were consistently related to gender, BMI, sleep patterns, speed, habits while driving, and type of distraction. The habit of engaging in secondary tasks while driving resulted in a cumulative better performance.
2021
Authors
Pinto, VH; Lima, J; Gonçalves, J; Costa, P;
Publication
Lecture Notes in Electrical Engineering
Abstract
Throughout this paper it is presented a novel elastic joint configuration, being compared with other similar joints found in recent literature. It is presented its modeling, being its estimation process developed offline, based on a proposed experimental setup. This setup enables to monitor and collect data from an absolute encoder and a load cell. Some data obtained from these sensors is then graphically represented, like angle and torque, obtaining some parameters. Finally, through an optimization process, where the error of the angle is minimized, the remaining parameters of the joint are estimated, thus obtaining a realistic model of the system. © The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2021.
2021
Authors
Dantas, M; Leitao, D; Correia, C; Macedo, R; Xu, WJ; Paulo, J;
Publication
2021 IEEE INTERNATIONAL CONFERENCE ON CLUSTER COMPUTING (CLUSTER 2021)
Abstract
Due to convenience and usability, many deep learning (DL) jobs resort to the available shared parallel file system (PFS) for storing and accessing training data when running in HPC environments. Under such a scenario, however, where multiple I/O-intensive applications operate concurrently, the PFS can quickly get saturated with simultaneous storage requests and become a critical performance bottleneck, leading to throughput variability and performance loss. We present MONARCH, a framework-agnostic middleware for hierarchical storage management. This solution leverages the existing storage tiers present at modern supercomputers (e.g., compute node's local storage, PFS) to improve DL training performance and alleviate the current I/O pressure of the shared PFS. We validate the applicability of our approach by developing and integrating an early prototype with the TensorFlow DL framework. Results show that MONARCH can reduce I/O operations submitted to the shared PFS by up to 45%, decreasing training time by 24% and 12%, for I/O-intensive models, namely LeNet and AlexNet.
2021
Authors
Loureiro, D; Rezaee, K; Pilehvar, MT; Camacho Collados, J;
Publication
COMPUTATIONAL LINGUISTICS
Abstract
Transformer-based language models have taken many fields in NLP by storm. BERT and its derivatives dominate most of the existing evaluation benchmarks, including those for Word Sense Disambiguation (WSD), thanks to their ability in capturing context-sensitive semantic nuances. However, there is still little knowledge about their capabilities and potential limitations in encoding and recovering word senses. In this article, we provide an in-depth quantitative and qualitative analysis of the celebrated BERT model with respect to lexical ambiguity. One of the main conclusions of our analysis is that BERT can accurately capture high-level sense distinctions, even when a limited number of examples is available for each word sense. Our analysis also reveals that in some cases language models come close to solving coarse grained noun disambiguation under ideal conditions in terms of availability of training data and computing resources. However, this scenario rarely occurs in real-world settings and, hence, many practical challenges remain even in the coarse-grained setting. We also perform an in-depth comparison of the two main language model-based WSD strategies, namely, fine-tuning and feature extraction, finding that the latter approach is more robust with respect to sense bias and it can better exploit limited available training data. In fact, the simple feature extraction strategy of averaging contextualized embeddings proves robust even using only three training sentences per word sense, with minimal improvements obtained by increasing the size of this training data.
2021
Authors
Rodrigues, T; Guimaraes, N; Monteiro, J;
Publication
EUROPEAN PSYCHIATRY
Abstract
2021
Authors
Leite, B; Abdalrahman, A; Castro, J; Frade, J; Moreira, J; Soares, C;
Publication
ICAART: PROCEEDINGS OF THE 13TH INTERNATIONAL CONFERENCE ON AGENTS AND ARTIFICIAL INTELLIGENCE - VOL 2
Abstract
Artificial Intelligence (AI) is continuously improving several aspects of our daily lives. There has been a great use of gadgets & monitoring devices for health and physical activity monitoring. Thus, by analyzing large amounts of data and applying Machine Learning (ML) techniques, we have been able to infer fruitful conclusions in various contexts. Activity Recognition is one of them, in which it is possible to recognize and monitor our daily actions. The main focus of the traditional systems is only to detect pre-established activities according to the previously configured parameters, and not to detect novel ones. However, when applying activity recognizers in real-world applications, it is necessary to detect new activities that were not considered during the training of the model. We propose a method for Novelty Detection in the context of physical activity. Our solution is based on the establishment of a threshold confidence value, which determines whether an activity is novel or not. We built and train our models by experimenting with three different algorithms and four threshold values. The best results were obtained by using the Random Forest algorithm with a threshold value of 0.8, resulting in 90.9% of accuracy and 85.1% for precision.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.