2025
Authors
Antonio Fernando Martins Cardoso; Mateus Martins Laranjeira; Matias Pinheiro Torres Fabricius; Bernardo Marques Amaral Silva; José Rui da Rocha Pinto Ferreira; Marcus Vinicius Alves Nunes;
Publication
2025 International Symposium on Lightning Protection (XVIII SIPDA)
Abstract
2025
Authors
Alves, E; Reiz, C; Gouveia, CS;
Publication
2025 IEEE Kiel PowerTech
Abstract
The increasing penetration of inverter-based resources (IBR) in medium voltage (MV) networks presents significant challenges for traditional overcurrent (OC) protection systems, particularly in ensuring selectivity, reliability, and fault isolation. This paper presents an adaptive protection system (APS) that dynamically adjusts protection settings based on real-time network conditions, addressing the challenges posed by distributed energy resources (DER). The methodology builds on ongoing research and development efforts, combining an offline phase, where operational scenarios are simulated using historical data, clustered with fuzzy c-means (FCM), and optimized with evolutionary particle swarm optimization (EPSO), and an online phase. To overcome the static nature of conventional schemes, a machine learning (ML)-based classifier is integrated into the APS, enabling real-time adaptation of protection settings. In the online phase, a centralized substation protection controller (CPC) leverages real-time measurements, communicated via IEC 61850 standard protocols, to classify network conditions using a support vector machine (SVM) classifier and activate the appropriate protection settings. The proposed APS has been validated on a Hardware-in-the-Loop (HIL) platform, demonstrating significant improvements in fault detection times, selectivity, and reliability compared to traditional OC protection systems. As part of a continued effort to refine and expand the system's capabilities, this work highlights the potential of integrating artificial intelligence (AI) and real-time/online decision-making to enhance the adaptability and robustness of MV network protection in scenarios with high DER penetration. © 2025 Elsevier B.V., All rights reserved.
2025
Authors
Ribeiro, J; Brilhante, M; Matos, DM; Silva, CA; Sobreira, H; Costa, P;
Publication
2025 IEEE INTERNATIONAL CONFERENCE ON AUTONOMOUS ROBOT SYSTEMS AND COMPETITIONS, ICARSC
Abstract
Multi-robot coordination aims to synchronize robots for optimized, collision-free paths in shared environments, addressing task allocation, collision avoidance, and path planning challenges. The Time Enhanced A* (TEA*) algorithm addresses multi-robot pathfinding offering a centralized and sequential approach. However, its sequential nature can lead to order-dependent variability in solutions. This study enhances TEA* through multi-threading, using thread pooling and parallelization techniques via OpenMP, and a sensitivity analysis enabling parallel exploration of robot-solving orders to improve robustness and the likelihood of finding efficient, feasible paths in complex environments. The results show that this approach improved coordination efficiency, reducing replanning needs and simulation time. Additionally, the sensitivity analysis assesses TEA*'s scalability across various graph sizes and number of robots, providing insights into how these factors influence the efficiency and performance of the algorithm.
2025
Authors
Moço, H; Sousa, C; Ferreira, R; Pinto, P; Pereira, C; Diogo, R;
Publication
INNOVATIVE INTELLIGENT INDUSTRIAL PRODUCTION AND LOGISTICS, IN4PL 2024, PT II
Abstract
Since supply chains have become complex and tracking a product's journey, from raw materials to the end of it's life has become more difficult. Consumers are demanding greater transparency about the materials origins and environmental impact of the products they buy. These new requirements, togeher with European Commission Green Deal strategy, lead to the concept of digital product passport (DPP). DPP could be seen as an instrument to boost circularity, however the DPP architecture and governance model still undefined and unclear. Data Governance in the context of the DPP acts as the backbone for ensuring accurate and reliable data within these passports or data models, leading to flawless traceability. This article approaches the DPPs and it's governance challenges, explaining how they function as digital repositories for a product's life cycle information and the concept of Data Governance. By understanding how these two concepts work together, we will explore a short use case within the footwear industry to show how DPP governance architecture might work in a distributed environment.
2025
Authors
Schlemmer, E; Felice, MD; Schuster, BE;
Publication
2025 11th International Conference of the Immersive Learning Research Network (iLRN) Proceedings - Selected Academic Contributions
Abstract
2025
Authors
Cunha, M; Mendes, R; de Montjoye, YA; Vilela, JP;
Publication
SCIENTIFIC REPORTS
Abstract
The widespread availability of wireless networking, such as Wi-Fi, has led to the pervasiveness of always connected mobile devices. These devices are provided with several sensors that allow the collection of large amounts of data, which pose a threat to personal privacy. It is well known that Wi-Fi connectivity information (e.g. BSSID) can be used for inferring user locations. This has caused the imposition of limitations to the access to such data in mobile devices. However, other sources of information about wireless connectivity are available, such as the Received Signal Strength Indicator (RSSI). In this work, we show that RSSI can be used to infer the presence of a user at common locations throughout time. This information can be correlated with other features, such as the hour of the day, to further learn semantic context about such locations with a prediction performance above 90%. Our analysis shows the privacy implications of inferring user locations through Wi-Fi RSSI, but also emphasizes the fingerprinting risk that results from the lack of protection when accessing RSSI measurements.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.