2025
Authors
Cao, Z; Pinto, AS; Bernardes, G;
Publication
International Conference on Computer Supported Education, CSEDU - Proceedings
Abstract
Sound design plays an important role in serious games, influencing user experience and learning outcomes. However, deriving general principles and best practices remains challenging, as most literature relies on case-based studies in different application domains. Through a systematic review of the literature, 21 studies were analyzed to address two key questions: 1) what types of serious games and application domains incorporate sound design? and 2) what sound design strategies are implemented to enhance user experience and learning outcomes? The findings show that serious games have mainly focused on education, healthcare, and training, using sound to enhance motivation (50%), cognition (32%), and knowledge acquisition (18%). Furthermore, sound design strategies fulfill distinct roles: sound effects enhance feedback and engagement, background music influences motivation and cognitive processing, ambient sounds support navigation and emotional regulation, and dialogue facilitates knowledge acquisition. The findings highlight the need for further research to establish standardized sound design principles to optimize user experience and learning outcomes in serious games. Copyright © 2025 by SCITEPRESS - Science and Technology Publications, Lda.
2025
Authors
Nunes, D; Amorim, R; Ribeiro, P; Coelho, A; Campos, R;
Publication
2025 IEEE INTERNATIONAL MEDITERRANEAN CONFERENCE ON COMMUNICATIONS AND NETWORKING, MEDITCOM
Abstract
This paper proposes FLUC, a modular framework that integrates open-source Large Language Models (LLMs) with Unmanned Aerial Vehicle (UAV) autopilot systems to enable autonomous control in Flying Networks (FNs). FLUC translates high-level natural language commands into executable UAV mission code, bridging the gap between operator intent and UAV behaviour. FLUC is evaluated using three open-source LLMs - Qwen 2.5, Gemma 2, and LLaMA 3.2 - across scenarios involving code generation and mission planning. Results show that Qwen 2.5 excels in multi-step reasoning, Gemma 2 balances accuracy and latency, and LLaMA 3.2 offers faster responses with lower logical coherence. A case study on energy-aware UAV positioning confirms FLUC's ability to interpret structured prompts and autonomously execute domain-specific logic, showing its effectiveness in real-time, mission-driven control.
2025
Authors
Fonseca, T; Ferreira, LL; Cabral, B; Severino, R; Nweye, K; Ghose, D; Nagy, Z;
Publication
Energy Inform.
Abstract
2025
Authors
Zugno, T; Ciochina, C; Sambhwani, S; Svedman, P; Pessoa, LM; Chen, B; Lehne, PH; Boban, M; Kürner, T;
Publication
IEEE WIRELESS COMMUNICATIONS
Abstract
Thanks to the vast amount of available resources and unique propagation properties, terahertz (THz) frequency bands are viewed as a key enabler for achieving ultrahigh communication performance and precise sensing capabilities in future wireless systems. Recently, the European Telecommunications Standards Institute (ETSI) initiated an Industry Specification Group (ISG) on THz which aims at establishing the technical foundation for subsequent standardization of this technology, which is pivotal for its successful integration into future networks. Starting from the work recently finalized within this group, this article provides an industrial perspective on potential use cases and frequency bands of interest for THz communication systems. We first identify promising frequency bands in the 100 GHz-1 THz range, offering over 500 GHz of available spectrum that can be exploited to unlock the full potential of THz communications. Then, we present key use cases and application areas for THz communications, emphasizing the role of this technology and its advantages over other frequency bands. We discuss their target requirements and show that some applications demand multi-Tb/s data rates, latency below 0.5 ms, and sensing accuracy down to 0.5 cm. Additionally, we identify the main deployment scenarios and outline other enabling technologies crucial for overcoming the challenges faced by THz systems. Finally, we summarize past and ongoing standardization efforts focusing on THz communications, while also providing an outlook toward the inclusion of this technology as an integral part of the future sixth generation (6G) and beyond communication networks.
2025
Authors
Ribeiro, AG; Vilaça, L; Costa, C; da Costa, TS; Carvalho, PM;
Publication
JOURNAL OF IMAGING
Abstract
Quality control represents a critical function in industrial environments, ensuring that manufactured products meet strict standards and remain free from defects. In highly regulated sectors such as the pharmaceutical industry, traditional manual inspection methods remain widely used. However, these are time-consuming and prone to human error, and they lack the reliability required for large-scale operations, highlighting the urgent need for automated solutions. This is crucial for industrial applications, where environments evolve and new defect types can arise unpredictably. This work proposes an automated visual defect detection system specifically designed for pharmaceutical bottles, with potential applicability in other manufacturing domains. Various methods were integrated to create robust tools capable of real-world deployment. A key strategy is the use of incremental learning, which enables machine learning models to incorporate new, unseen data without full retraining, thus enabling adaptation to new defects as they appear, allowing models to handle rare cases while maintaining stability and performance. The proposed solution incorporates a multi-view inspection setup to capture images from multiple angles, enhancing accuracy and robustness. Evaluations in real-world industrial conditions demonstrated high defect detection rates, confirming the effectiveness of the proposed approach.
2025
Authors
Fonseca, T; Sousa, C; Venâncio, R; Pires, P; Severino, R; Rodrigues, P; Paiva, P; Ferreira, LL;
Publication
CoRR
Abstract
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.