2025
Authors
Gonçalves, A; Silva, MF; Mendonça, H; Rocha, CD;
Publication
ROBOTICS
Abstract
Stroke is a leading cause of long-term disability worldwide, with survivors often facing significant challenges in regaining upper-limb functionality. In response, robotic rehabilitation systems have emerged as promising tools to enhance post-stroke recovery by delivering precise, adaptable, and patient-specific therapy. This paper presents a review of robotic interfaces developed specifically for upper-limb rehabilitation. It analyses existing exoskeleton- and end-effector-based systems, with respect to three core design pillars: assistance types, control philosophies, and actuation methods. The review highlights that most solutions favor electrically actuated exoskeletons, which use impedance- or electromyography-driven control, with active assistance being the predominant rehabilitation mode. Resistance-providing systems remain underutilized. Furthermore, no hybrid approaches featuring the combination of robotic manipulators with actuated interfaces were found. This paper also identifies a recent trend towards lightweight, modular, and portable solutions and discusses the challenges in bridging research prototypes with clinical adoption. By focusing exclusively on upper-limb applications, this work provides a targeted reference for researchers and engineers developing next-generation rehabilitation technologies.
2025
Authors
Roberto, GF; Pereira, DC; Martins, AS; Tosta, TAA; Soares, C; Lumini, A; Rozendo, GB; Neves, LA; Nascimento, MZ;
Publication
PATTERN RECOGNITION LETTERS
Abstract
Covid-19 is a severe illness caused by the Sars-CoV-2 virus, initially identified in China in late 2019 and swiftly spreading globally. Since the virus primarily impacts the lungs, analyzing chest X-rays stands as a reliable and widely accessible means of diagnosing the infection. In computer vision, deep learning models such as CNNs have been the main adopted approach for detection of Covid-19 in chest X-ray images. However, we believe that handcrafted features can also provide relevant results, as shown previously in similar image classification challenges. In this study, we propose a method for identifying Covid-19 in chest X-ray images by extracting and classifying local and global percolation-based features. This technique was tested on three datasets: one comprising 2,002 segmented samples categorized into two groups (Covid-19 and Healthy); another with 1,125 non-segmented samples categorized into three groups (Covid-19, Healthy, and Pneumonia); and a third one composed of 4,809 non-segmented images representing three classes (Covid-19, Healthy, and Pneumonia). Then, 48 percolation features were extracted and give as input into six distinct classifiers. Subsequently, the AUC and accuracy metrics were assessed. We used the 10-fold cross-validation approach and evaluated lesion sub-types via binary and multiclass classification using the Hermite polynomial classifier, a novel approach in this domain. The Hermite polynomial classifier exhibited the most promising outcomes compared to five other machine learning algorithms, wherein the best obtained values for accuracy and AUC were 98.72% and 0.9917, respectively. We also evaluated the influence of noise in the features and in the classification accuracy. These results, based in the integration of percolation features with the Hermite polynomial, hold the potential for enhancing lesion detection and supporting clinicians in their diagnostic endeavors.
2025
Authors
Arnaud, J; São Mamede, H; Branco, FA;
Publication
F1000Research
Abstract
Digital transformation has been one of the main trends in organizations in recent years, and digital literacy is a critical factor in the success of this transformation. Digital transformation involves the use of digital technologies to improve an organization’s processes, products, and services. For this transformation to be successful, it is necessary for employees to have knowledge of and skills in digital technologies. Digital literacy allows employees to understand technologies and their applications, know how to use them efficiently and safely, evaluate and select the most appropriate digital tools for each task, and be prepared to deal with problems and challenges that arise in the digital environment. This study investigates the relationship between digital transformation and digital literacy through a Systematic Literature Review conducted in accordance with Kitchenham’s guidelines. A total of 54 articles, published from 2018, were analyzed from databases such as Scopus, Science Direct, IEEE and Springer. The results reveal that digital literacy significantly influences the success of digital transformation, particularly in areas such as employee adaptability, innovation capacity, and digital tool integration. Key mediating and moderating factors identified include organizational learning culture, leadership support, ongoing training programs, and technological infrastructure. Based on these findings, an explanatory model was developed that maps the interaction between these variables and their impact on digital transformation outcomes. The study offers practical implications for organizations seeking to enhance their digital maturity: investing in employee digital literacy development, aligning leadership strategies with digital initiatives, and fostering a supportive culture for digital adoption are crucial steps. Thus, this study is relevant because it seeks to understand how digital literacy can impact Digital Transformation in organizations and, through the construction of an explanatory model, allows the identification of variables that influence this relationship by developing strategies to improve the digital literacy of employees in organizations. © 2025 Elsevier B.V., All rights reserved.
2025
Authors
Pasandideh, S; Martins, J; Pereira, P; Gandini, A; De la Cal, MZ; Kalvet, T; Koor, T; Sopelana, A; de Aguileta, AL;
Publication
ADVANCES IN CULTURAL TOURISM RESEARCH, ICCT 2023
Abstract
This chapter describes the IMPACTOUR co-creation method, which is developed to enhance the impact of cultural tourism in various destinations. The method utilizes effective strategies and actions to monitor and increase the impact of cultural tourism. The primary objective of the IMPACTOUR technique is to support decision-makers in improving the sustainability and competitiveness of cultural tourists in their destinations. The method involves collecting and analyzing data from diverse sources, including tourism stakeholders and specifically local communities to create a comprehensive decision-making system. The resulting recommendations aim to promote the positive impacts of cultural tourism while minimizing negative effects and fostering long-term development. Ultimately, the IMPACTOUR method seeks to assist destinations and attractions in becoming more competitive and attractive to cultural visitors, while ensuring their long-term sustainability.
2025
Authors
Almeida, M; Soares, F; Oliveira, F;
Publication
Energies and Quality Journal
Abstract
2025
Authors
Ferreira, S; Rodrigues, MA; Mateus, C; Rodrigues, PP; Rocha, NB;
Publication
JOURNAL OF MEDICAL INTERNET RESEARCH
Abstract
Background: In modern, high-speed work settings, the significance of mental health disorders is increasingly acknowledged as a pressing health issue, with potential adverse consequences for organizations, including reduced productivity and increased absenteeism. Over the past few years, various mental health management solutions, such as biofeedback applications, have surfaced as promising avenues to improve employees' mental well-being. However, most studies on these interventions have been conducted in controlled laboratory settings. Objective: This review aimedtosystematicallyidentify and analyzestudies that implementedbiofeedback-based interventions in real-world occupational settings, focusing on their effectiveness in improving psychological well-being and mental health. Methods: A systematic review was conducted following the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines. We searched PubMed and EBSCO databases for studies published between 2012 and 2024. Inclusion criteria were original peer-reviewed studies that focused on employees and used biofeedback interventions to improve mental health or prevent mental illness. Exclusion criteria included nonemployee samples, lack of a description of the intervention, and low methodological quality (assessed using the Physiotherapy Evidence Database [PEDro] checklist). Data were extracted on study characteristics, intervention type, physiological and self-reported outcomes, and follow-up measures. Risk of bias was assessed, and VOSviewer was used to visualize the distribution of research topics. Results: A total of 9 studies met the inclusion criteria. The interventions used a range of delivery methods, including traditional biofeedback, mobile apps, mindfulness techniques, virtual reality, and cerebral blood flow monitoring. Most studies focused on breathing techniques to regulate physiological responses (eg, heart rate variability and respiratory sinus arrhythmia) and showed reductions in stress, anxiety, and depressive symptoms. Mobile and app-directed interventions appeared particularly promising for improving resilience and facilitating recovery after stress. Of the 9 studies, 8 (89%) reported positive outcomes, with 1 (11%) study showing initial increases in stress due to logistical limitations in biofeedback access. Sample sizes were generally small, and long-term follow-up data were limited. Conclusions:Biofeedback interventions in workplace settings show promising short-term results in reducing stress and improving mental health, particularly when incorporating breathing techniques and user-friendly delivery methods such as mobile apps. However, the field remains underexplored in occupational contexts. Future research should address adherence challenges, scalability, cost-effectiveness, and long-term outcomesto support broader implementation of biofeedback as a sustainable workplace mental health strategy.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.