2025
Authors
de Castro, R; Araujo, RE; Brembeck, J;
Publication
IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING
Abstract
This work focuses on designing nonlinear control algorithms for dual half-bridge converters (DHBs). We propose a two-layer controller to regulate the current and voltage of the DHB. The first layer utilizes a change in the control variable to obtain a quasi-linear representation of the DHB, allowing for the application of simple linear controllers to regulate current and power flow. The second layer employs a nonlinear control allocation algorithm to select control actions that fulfill (pseudo) power setpoints specified by the first control layer; it also minimizes peak-to-peak currents in the DHB and enforces voltage balance constraints. We apply the DHB and this new control strategy to manage power flow in a hybrid energy storage system comprising of a battery and supercapacitors. Numerical simulation results demonstrate that, in comparison with state-of-the-art approaches, our control algorithm is capable of maintaining good transient behavior over a wide operating range, while reducing peak-to-peak current by up to 80%.
2025
Authors
Tosin, R; Rodrigues, L; Santos-Campos, M; Gonçalves, I; Barbosa, C; Santos, F; Martins, R; Cunha, M;
Publication
SMART AGRICULTURAL TECHNOLOGY
Abstract
This study demonstrates the application of a tomography-like (TL) method to monitor grape maturation dynamics over two growing seasons (2021-2022) in the Douro Wine Region. Using a Vis-NIR point-of-measurement sensor, which employs visible and near-infrared light to penetrate grape tissues non-destructively and provide spectral data to predict internal composition, this approach captures non-destructive measurements of key physicochemical properties, including soluble solids content (SSC), weight-to-volume ratio, chlorophyll and anthocyanin levels across internal grape tissues-skin, pulp, and seeds-over six post-veraison stages. The collected data were used to generate detailed metabolic maps of maturation, integrating topographical factors such as altitude and NDVI-based (normalised difference vegetation index) vigour assessments, which revealed significant (p < 0.05) variations in SSC, chlorophyll, and anthocyanin levels across vineyard zones. The metabolic maps generated from the TL method enable high-throughput data to reveal the impact of environmental variability on grape maturation across distinct vineyard areas. Predictive models using random forest (RF) and self-learning artificial intelligence (SL-AI) algorithms showed RF's robustness, achieving stable predictions with R-2 >= 0.86 and MAPE <= 33.83 %. To illustrate the TL method's practical value, three hypothetical decision models were developed for targeted winemaking objectives based on SSC, chlorophyll in the pulp, and anthocyanin in the skin and seeds. These models underscore the TL method's ability to support site-specific management (SSM) by providing actionable agricultural practices (e.g. harvest) into vineyard management, guiding winemakers to implement tailored interventions based on metabolic profiles rather than only cultivar characteristics. This precision viticulture (PV) approach enhances wine quality and production efficiency by aligning vineyard practices with specific wine quality goals.
2025
Authors
Barbosa, B;
Publication
Strategic Brand Management in the Age of AI and Disruption
Abstract
The main aims of this chapter were to explore metaverse branding by identifying the main trends and contributions in extant literature. Through a bibliometry and the critical analysis of the main contributions in the literature, the chapter proposes a metaverse branding conceptualization, which shows how immersive metaverse experiences that provide multi- dimensional value enhance brand engagement, which leads to increased brand awareness, brand love, satisfaction, trust, and brand equity. These factors ultimately drive online and offline purchases and strengthen brand loyalty. Overall, this chapter and the proposed framework provide relevant insights for both managers defining metaverse branding strategies, and researchers interested in these topics. © 2025, IGI Global Scientific Publishing. All rights reserved.
2025
Authors
Cunha, A; Campos, MJ; Ferreira, MC; Fernandes, CS;
Publication
JOURNAL OF INTERPROFESSIONAL CARE
Abstract
Interprofessional collaboration is an essential competency for healthcare professionals, and escape rooms have emerged as an innovative strategy to enhance teamwork and communication. The purpose of this scoping review was to identify and summarize how escape rooms are used in the teaching and enhancement of interprofessional collaboration skills. We conducted a scoping review following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses for Scoping Review (PRISMA-ScR) guidelines. A search of five databases, Scopus (R), Web of Science (R), CINAHL Complete (R), MEDLINE (R) and PsychINFO (R) was conducted for all articles until 1 January 2024. The review included 15 studies, mostly from the USA, involving a total of 2,434 participants across various healthcare professions. Key findings indicated significant improvements in group cohesion, communication, understanding of team roles, and interprofessional skills. Escape rooms can be an effective pedagogical tool in enhancing interprofessional competencies among healthcare students and professionals. Further research is needed to explore the sustainability of skills gained over time through escape rooms and to refine assessment methods.
2025
Authors
Shaji, N; Tabassum, S; Ribeiro, RP; Gama, J; Santana, P; Garcia, A;
Publication
COMPLEX NETWORKS & THEIR APPLICATIONS XIII, COMPLEX NETWORKS 2024, VOL 1
Abstract
Waste transport management is a critical sector where maintaining accurate records and preventing fraudulent or illegal activities is essential for regulatory compliance, environmental protection, and public safety. However, monitoring and analyzing large-scale waste transport records to identify suspicious patterns or anomalies is a complex task. These records often involve multiple entities and exhibit variability in waste flows between them. Traditional anomaly detection methods relying solely on individual transaction data, may struggle to capture the deeper, network-level anomalies that emerge from the interactions between entities. To address this complexity, we propose a hybrid approach that integrates network-based measures with machine learning techniques for anomaly detection in waste transport data. Our method leverages advanced graph analysis techniques, such as sub-graph detection, community structure analysis, and centrality measures, to extract meaningful features that describe the network's topology. We also introduce novel metrics for edge weight disparities. Further, advanced machine learning techniques, including clustering, neural network, density-based, and ensemble methods are applied to these structural features to enhance and refine the identification of anomalous behaviors.
2025
Authors
Reza, S; Ferreira, MC; Machado, JJM; Tavares, JMRS;
Publication
IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS
Abstract
Acoustic monitoring of road traffic events is an indispensable element of Intelligent Transport Systems to increase their effectiveness. It aims to detect the temporal activity of sound events in road traffic auditory scenes and classify their occurrences. Current state-of-the-art algorithms have limitations in capturing long-range dependencies between different audio features to achieve robust performance. Additionally, these models suffer from external noise and variation in audio intensities. Therefore, this study proposes a spectrogram-specific transformer model employing a multi-head attention mechanism using the scaled product attention technique based on softmax in combination with Temporal Convolutional Networks to overcome these difficulties with increased accuracy and robustness. It also proposes a unique preprocessing step and a Deep Linear Projection method to reduce the dimensions of the features before passing them to the learnable Positional Encoding layer. Rather than monophonic audio data samples, stereophonic Mel-spectrogram features are fed into the model, improving the model's robustness to noise. State-of-the-art One-dimensional Convolutional Neural Networks and Long Short-term Memory models were used to compare the proposed model's performance on two well-known datasets. The results demonstrated its superior performance by achieving an improvement in accuracy of 1.51 to 3.55% compared to the studied baselines.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.