Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

2026

Economic benchmarking of assisted pollination methods for kiwifruit flowers: Assessment of cost-effectiveness of robotic solution

Authors
Pinheiro, I; Moura, P; Rodrigues, L; Pacheco, AP; Teixeira, JG; Valente, LG; Cunha, M; Neves Dos Santos, FN;

Publication
Agricultural Systems

Abstract
In 2023, global kiwifruit production reached over 4.4 million tonnes, highlighting the crop's significant economic importance. However, achieving high yields depends on adequate pollination. In Actinidia species, pollen is transferred by insects from male to female flowers on separate plants. Natural pollination faces increasing challenges due to the decline in pollinator populations and climate variability, driving the adoption of assisted pollination methods. This study examines the Portuguese kiwifruit sector, one of the world's top 12 producers, using a novel mixed-methods approach that integrates both qualitative and quantitative analyses to assess the feasibility of robotic pollination. The qualitative study identifies the benefits and challenges of current methods and explores how robotic pollination could address these challenges. The quantitative analysis explores the cost-effectiveness and practicality of implementing robotic pollination as a product and service. Findings indicate that most farmers use handheld pollination devices but face pollen wastage and application timing challenges. Economic analysis establishes a break-even point of €685 per hectare for an annual single application, with a first robotic pollination of €17 146 becoming cost-effective for orchards of at least 3.5 hectares and a second robotic solution of €34 293 becoming cost-effective for orchards up to 7 hectares. A robotic pollination service priced at €685 per hectare per application presents a low-risk and a viable alternative for growers. This study provides robust economic insights supporting the adoption of robotic pollination technologies. This study is crucial to make informed decisions to enhance kiwifruit production's productivity and sustainability through precise robotic-assisted pollination. © 2025 Elsevier B.V., All rights reserved.

2026

Multitask Learning Approach for Foveal Avascular Zone Segmentation in OCTA Images

Authors
Melo, M; Carneiro, A; Campilho, A; Mendonça, AM;

Publication
PATTERN RECOGNITION AND IMAGE ANALYSIS, IBPRIA 2025, PT II

Abstract
The segmentation of the foveal avascular zone (FAZ) in optical coherence tomography angiography (OCTA) images plays a crucial role in diagnosing and monitoring ocular diseases such as diabetic retinopathy (DR) and age-related macular degeneration (AMD). However, accurate FAZ segmentation remains challenging due to image quality and variability. This paper provides a comprehensive review of FAZ segmentation techniques, including traditional image processing methods and recent deep learning-based approaches. We propose two novel deep learning methodologies: a multitask learning framework that integrates vessel and FAZ segmentation, and a conditionally trained network that employs vessel-aware loss functions. The performance of the proposed methods was evaluated on the OCTA-500 dataset using the Dice coefficient, Jaccard index, 95% Hausdorff distance, and average symmetric surface distance. Experimental results demonstrate that the multitask segmentation framework outperforms existing state-of-the-art methods, achieving superior FAZ boundary delineation and segmentation accuracy. The conditionally trained network also improves upon standard U-Net-based approaches but exhibits limitations in refining the FAZ contours.

2026

Cross-Lingual Information Retrieval in Tetun for Ad-Hoc Search

Authors
Araújo, A; de Jesus, G; Nunes, S;

Publication
Lecture Notes in Computer Science

Abstract
Developing information retrieval (IR) systems that enable access across multiple languages is crucial in multilingual contexts. In Timor-Leste, where Tetun, Portuguese, English, and Indonesian are official and working languages, no cross-lingual information retrieval (CLIR) solutions currently exist to support information access across these languages. This study addresses that gap by investigating CLIR approaches tailored to the linguistic landscape of Timor-Leste. Leveraging an existing monolingual Tetun document collection and ad-hoc text retrieval baselines, we explore the feasibility of CLIR for Tetun. Queries were manually translated into Portuguese, English, and Indonesian to create a multilingual query set. These were then automatically translated back into Tetun using Google Translate and several large language models, and used to retrieve documents in Tetun. Results show that Google Translate is the most reliable tool for Tetun CLIR overall, and the Hiemstra LM consistently outperforms BM25 and DFR BM25 in cross-lingual retrieval performance. However, overall effectiveness remains up to 26.95% points lower than that of the monolingual baseline, underscoring the limitations of current translation tools and the challenges of developing an effective CLIR for Tetun. Despite these challenges, this work establishes the first CLIR baseline for Tetun ad-hoc text retrieval, providing a foundation for future research in this under-resourced setting. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2026.

2026

User Behavior in Sports Search: Entity-Centric Query and Click Log Analysis

Authors
Damas, J; Nunes, S;

Publication
Lecture Notes in Computer Science

Abstract
Understanding user behavior in search systems is essential for improving retrieval effectiveness and user satisfaction. While prior research has extensively examined general-purpose web search engines, domain-specific contexts—such as sports information—remain comparatively underexplored. In this study, we analyze over 400,000 interaction log entries from a sports-oriented search engine collected over a two-week period. Our analysis combines classic query-level metrics (e.g., frequency distributions, query lengths) with a detailed examination of click behavior, including entropy-based intent variability and a custom query quality scoring model. Compared to established baselines from general and specialized search environments, we observe a high proportion of new and single-term queries, as well as a notable lack of representativeness among top queries. These findings reveal patterns shaped by the event-driven and entity-centric nature of sports content, offering actionable insights for the design of domain-specific retrieval systems. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2026.

2026

Unsupervised contrastive analysis for anomaly detection in brain MRIs via conditional diffusion models

Authors
Patrício, C; Barbano, CA; Fiandrotti, A; Renzulli, R; Grangetto, M; Teixeira, LF; Neves, JC;

Publication
PATTERN RECOGNITION LETTERS

Abstract
Contrastive Analysis (CA) detects anomalies by contrasting patterns unique to a target group (e.g., unhealthy subjects) from those in a background group (e.g., healthy subjects). In the context of brain MRIs, existing CA approaches rely on supervised contrastive learning or variational autoencoders (VAEs) using both healthy and unhealthy data, but such reliance on target samples is challenging in clinical settings. Unsupervised Anomaly Detection (UAD) learns a reference representation of healthy anatomy, eliminating the need for target samples. Deviations from this reference distribution can indicate potential anomalies. In this context, diffusion models have been increasingly adopted in UAD due to their superior performance in image generation compared to VAEs. Nonetheless, precisely reconstructing the anatomy of the brain remains a challenge. In this work, we bridge CA and UAD by reformulating contrastive analysis principles for the unsupervised setting. We propose an unsupervised framework to improve the reconstruction quality by training a self-supervised contrastive encoder on healthy images to extract meaningful anatomical features. These features are used to condition a diffusion model to reconstruct the healthy appearance of a given image, enabling interpretable anomaly localization via pixel-wise comparison. We validate our approach through a proof-of-concept on a facial image dataset and further demonstrate its effectiveness on four brain MRI datasets, outperforming baseline methods in anomaly localization on the NOVA benchmark.

2026

Robotic Process Automation: A Qualitative Journey Through RPA's Impacts on Company Employees

Authors
Simoes, E; Simoes, AC; Rodrigues, JC; Lourenço, P;

Publication
ADVANCES IN PRODUCTION MANAGEMENT SYSTEMS. CYBER-PHYSICAL-HUMAN PRODUCTION SYSTEMS: HUMAN-AI COLLABORATION AND BEYOND, APMS 2025, PT I

Abstract
Companies are increasingly adopting technologies such as Robotic Process Automation (RPA) to reduce costs and improve productivity. RPA is deployed in areas like accounting, payroll, and finance to automate business processes. While RPA does not necessarily result in unemployment, it has notable effects on employees and company governance. This study explores the impact of RPA implementation on employees and company governance, using a qualitative methodology based on thirteen semi-structured interviews with RPA experts from four multinational companies. The results indicate that the impacts of RPA vary depending on the automation strategy adopted (task-oriented or process-oriented). In task-oriented strategies, citizen developers often play a central role, contributing to rapid implementation. In contrast, process-oriented strategies tend to rely on professional developers and require more structured governance. The findings also point out that RPA influences not only task execution but also employee upskilling, job role redefinition, and the evolution of governance models. The study proposes an integrated framework linking automation strategy, governance, upskilling, and employee adaptation, offering both practical insights and theoretical contributions to digital transformation research and for managing risks and enhancing workforce capabilities. It also advances academic understanding by linking real-world RPA implementations to organisational and technological impacts.

  • 6
  • 4359