2022
Authors
Guedes, W; Deotti, L; Dias, B; Soares, T; de Oliveira, LW;
Publication
ENERGIES
Abstract
Traditional models of power systems are undergoing a restructuring process, stimulated by the growing deployment of renewable energy sources, making them more decentralized and progressively increasing the focus on the consumer. New arrangements are being explored, allowing consumers to play a more active role in energy systems, highlighting the concept of consumer-centric markets. This work presents an optimization model that considers the insertion of the battery energy storage system (BESS) in the concept of community energy markets. This model aims to increase the community income and includes the degradation of BESS, also evaluating different arrangements of BESS in the community markets. In the investigated scenarios, discussions about the feasibility of inserting BESS through the analysis of social welfare (SW) and fairness indicators were carried out. With the results, it was possible to observe that there are structures that are more advantageous from the perspective of the communities and others from the perspective of the members of the communities, bringing some insights into the different impacts of a BESS in an energy community.
2022
Authors
Lorgat, MG; Paredes, H; Rocha, T;
Publication
Proceedings - 2022 11th International Conference on Computer Technologies and Development, TechDev 2022
Abstract
2022
Authors
Paulino, D; Barroso, J; Paredes, H;
Publication
ERCIM News
Abstract
2022
Authors
Neri, A; Barbosa, RS; Oliveira, JN;
Publication
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING
Abstract
Based on the connection between the categorical derivation of classical programs from specifications and a category-theoretic approach to quantum information, this paper contributes to extending the laws of classical program algebra to quantum programming. This aims at building correct-by-construction quantum circuits to be deployed on quantum devices such as those available through the IBM Q Experience. Reversibility is ensured by minimal complements. Such complementation is extended inductively to encompass catamorphisms on lists (vulgo folds), giving rise to the corresponding recursion scheme in reversible computation. The same idea is then applied to the setting of quantum programming, where computation is expressed by unitary transformations. This yields the notion of 'quantamorphism', a structural form of quantum recursion implementing cycles and folds on lists with quantum control flow. By Kleisli correspondence, quantamorphisms can be written as monadic functional programs with quantum parameters. This enables the use of Haskell, a monadic functional programming language, to perform the experimental work. Such calculated quantum programs prepared in Haskell are pushed through Quipper and the Qiskit interface to IBM Q quantum devices. The generated quantum circuits - often quite large - exhibit the predicted behaviour. However, running them on real quantum devices naturally incurs a significant amount of errors. As quantum technology is rapidly evolving, an increase in reliability is likely in the future, allowing for our programs to run more accurately.
2022
Authors
Silva, B; Ribeiro, M; Henriques, TS;
Publication
2022 10th E-Health and Bioengineering Conference, EHB 2022
Abstract
Physiological signals offer a vast amount of information about the well-being of the human system. Understanding the behavior and complexity of these signs is important for accurate assessments and diagnoses. This study focuses on fetal heart rate (FHR) analysis and its potential to detect perinatal asphyxia by analyzing how different representations of the FHR series could aid in asphyxia detection. Additionally, different compression schemes were applied to evaluate the potential of compression as a measure of complexity. For this purpose, text files containing data of the last hour of the FHR before birth were converted into different types of images (Time Series, Time Series with fixed axes, Recurrence Plot and Poincaré Plot). We then applied compression schemes for text (BZIP2 and GZIP) and images (Lempel-Ziv-Welch, DEFLATE, and JPG) in 5, 10, and 30-minute windows. Correlation analysis revealed that similar compressed formats, such as BZIP2/GZIP and TIFF LZW/TIFF DEFLATE/JPG LOSSY/JPG LOSSLESS, showed the highest values and the correlation between uncompressed and compressed formats became increasingly more negative for larger time windows. Mann-Whitney test between groups (with and without asphyxia) revealed that compressed patterned images, such as Recurrence Plots, showed the highest potential in detecting asphyxia. Moreover, we confirm that larger time windows allow for better detection, due to the presence of more detailed patterns. These findings confirmed the potential of time series image representation in detecting fetal conditions, as well as show that the compression of images leads to better results than the compression of text files. © 2022 IEEE.
2022
Authors
Soares, IN; Pinto, VH; Lima, J; Costa, P;
Publication
ROBOTICS FOR SUSTAINABLE FUTURE, CLAWAR 2021
Abstract
In order to study the behavior and performance of a robot, building its simulation model is crucial. Realistic simulation tools using physics engines enable faster, more accurate and realistic testing conditions, without depending on the real vehicle. By combining legged and wheeled locomotion, hybrid vehicles are specially useful for operating in different types of terrains, both indoors and outdoors. They present increased mobility, versatility and adaptability, as well as easier maneuverability, when compared to vehicles using only one of the mechanisms. This paper presents the realistic simulation through the SimTwo simulator software of a hybrid legged-wheeled robot. It has four 3-DOF (degrees of freedom) legs combining rigid and non-rigid joints and has been fully designed, tested and validated in the simulated environment with incorporated dynamics.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.