2026
Authors
Ferreira, MC; da Silva, JFL; Abrantes, D; Hora, J; Felício, S; Gal?ao, T; Coimbra, MT;
Publication
Lecture Notes in Mobility
Abstract
This study focuses on providing meaningful information to vulnerable road users (VRUs) to support their objectives and perceptions while navigating urban spaces, employing a novel route planning concept. Through three focus group sessions, a comprehensive survey was conducted to identify the needs and concerns of VRUs, leading to the development of an integrated and collaborative mobile application for active mobility. The application encompasses route calculation, prioritizing safety, comfort, civic participation, and empathy. The solution aims to bridge citizen users and city managers, facilitating alerts, historical information on safety and comfort, and collaborative problem-solving and sharing of urban attractions. A prototype of the concept was developed and extensively tested by potential users, and subjective evaluation and feedback demonstrated the usefulness and added value of the integrated and collaborative approach. This study highlights the proposed solution relevance and differentiation from official alerts, user experiences, and civic participation, positioning it as a comprehensive solution for active mobility. © 2025 Elsevier B.V., All rights reserved.
2026
Authors
Pinheiro, I; Moura, P; Rodrigues, L; Pacheco, AP; Teixeira, JG; Valente, LG; Cunha, M; Neves Dos Santos, FN;
Publication
Agricultural Systems
Abstract
In 2023, global kiwifruit production reached over 4.4 million tonnes, highlighting the crop's significant economic importance. However, achieving high yields depends on adequate pollination. In Actinidia species, pollen is transferred by insects from male to female flowers on separate plants. Natural pollination faces increasing challenges due to the decline in pollinator populations and climate variability, driving the adoption of assisted pollination methods. This study examines the Portuguese kiwifruit sector, one of the world's top 12 producers, using a novel mixed-methods approach that integrates both qualitative and quantitative analyses to assess the feasibility of robotic pollination. The qualitative study identifies the benefits and challenges of current methods and explores how robotic pollination could address these challenges. The quantitative analysis explores the cost-effectiveness and practicality of implementing robotic pollination as a product and service. Findings indicate that most farmers use handheld pollination devices but face pollen wastage and application timing challenges. Economic analysis establishes a break-even point of €685 per hectare for an annual single application, with a first robotic pollination of €17 146 becoming cost-effective for orchards of at least 3.5 hectares and a second robotic solution of €34 293 becoming cost-effective for orchards up to 7 hectares. A robotic pollination service priced at €685 per hectare per application presents a low-risk and a viable alternative for growers. This study provides robust economic insights supporting the adoption of robotic pollination technologies. This study is crucial to make informed decisions to enhance kiwifruit production's productivity and sustainability through precise robotic-assisted pollination. © 2025 Elsevier B.V., All rights reserved.
2026
Authors
Mendes Neves, T; Meireles, L; Mendes Moreira, JC;
Publication
Lecture Notes in Computer Science
Abstract
Large Events Models (LEMs) are a class of models designed to predict and analyze the sequence of events in soccer matches, capturing the complex dynamics of the game. The original LEM framework, based on a chain of classifiers, faced challenges such as synchronization, scalability issues, and limited context utilization. This paper proposes a unified and scalable approach to model soccer events using a tabular autoregressive model. Our models demonstrate significant improvements over the original LEM, achieving higher accuracy in event prediction and better simulation quality, while also offering greater flexibility and scalability. The unified LEM framework enables a wide range of applications in soccer analytics that we display in this paper, including real-time match outcome prediction, player performance analysis, and game simulation, serving as a general solution for many problems in the field. © 2025 Elsevier B.V., All rights reserved.
2026
Authors
Simões E.; Simões A.C.; Rodrigues J.C.; Lourenço P.;
Publication
IFIP Advances in Information and Communication Technology
Abstract
Companies are increasingly adopting technologies such as Robotic Process Automation (RPA) to reduce costs and improve productivity. RPA is deployed in areas like accounting, payroll, and finance to automate business processes. While RPA does not necessarily result in unemployment, it has notable effects on employees and company governance. This study explores the impact of RPA implementation on employees and company governance, using a qualitative methodology based on thirteen semi-structured interviews with RPA experts from four multinational companies. The results indicate that the impacts of RPA vary depending on the automation strategy adopted (task-oriented or process-oriented). In task-oriented strategies, citizen developers often play a central role, contributing to rapid implementation. In contrast, process-oriented strategies tend to rely on professional developers and require more structured governance. The findings also point out that RPA influences not only task execution but also employee upskilling, job role redefinition, and the evolution of governance models. The study proposes an integrated framework linking automation strategy, governance, upskilling, and employee adaptation, offering both practical insights and theoretical contributions to digital transformation research and for managing risks and enhancing workforce capabilities. It also advances academic understanding by linking real-world RPA implementations to organisational and technological impacts.
2026
Authors
Cordeiro, A; Rocha, LF; Boaventura-Cunha, J; Figueiredo, D; Souza, JP;
Publication
ROBOTICS AND AUTONOMOUS SYSTEMS
Abstract
Robotic bin-picking is a critical operation in modern industry, which is characterised by the detection, selection, and placement of items from a disordered and cluttered environment, which can be boundary limited or not, e.g. bins, boxes or containers. In this context, perception systems are employed to localise, detect and estimate grasping points. Despite the considerable progress made, from analytical approaches to recent deep learning methods, challenges still remain. This is evidenced by the growing innovation proposing distinct solutions. This paper aims to review perception methodologies developed since 2009, providing detailed descriptions and discussions of their implementation. Additionally, it presents an extensive study, detailing each work, along with a comprehensive overview of the advancements in bin-picking perception.
2026
Authors
Costa, L; Barbosa, S; Cunha, J;
Publication
Future Gener. Comput. Syst.
Abstract
In recent years, the research community, but also the general public, has raised serious questions about the reproducibility and replicability of scientific work. Since many studies include some kind of computational work, these issues are also a technological challenge, not only in computer science, but also in most research domains. Computational replicability and reproducibility are not easy to achieve due to the variety of computational environments that can be used. Indeed, it is challenging to recreate the same environment via the same frameworks, code, programming languages, dependencies, and so on. We propose a framework, known as SciRep, that supports the configuration, execution, and packaging of computational experiments by defining their code, data, programming languages, dependencies, databases, and commands to be executed. After the initial configuration, the experiments can be executed any number of times, always producing exactly the same results. Our approach allows the creation of a reproducibility package for experiments from multiple scientific fields, from medicine to computer science, which can be re-executed on any computer. The produced package acts as a capsule, holding absolutely everything necessary to re-execute the experiment. To evaluate our framework, we compare it with three state-of-the-art tools and use it to reproduce 18 experiments extracted from published scientific articles. With our approach, we were able to execute 16 (89%) of those experiments, while the others reached only 61%, thus showing that our approach is effective. Moreover, all the experiments that were executed produced the results presented in the original publication. Thus, SciRep was able to reproduce 100% of the experiments it could run. © 2025 The Authors
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.