2026
Authors
Pilarski, L; Luiz, E; Gomes, S; Pinto, T; Filipe, V; Rijo, G; Barroso, JMP;
Publication
Lecture Notes in Networks and Systems
Abstract
This study highlights the critical role of Large Language Model (LLM) in simplifying technical content and integrating visual data for accessible communication. It compares GPT-4 and Llama-3.2-90b-Vision-Preview, focusing on readability, semantic similarity, and multimodal interpretation using robust metrics like Flesch Reading Ease, Gunning Fog Index, and CLIP Score. GPT-4 retains key information and achieves high semantic and textual integration scores, making it more suitable for complex technical scenarios. Furthermore, LLaMA prioritizes readability and simplicity, outperforming in generating accessible captions. Both models show optimal performance with a temperature setting of 0.5, balancing simplicity and meaning preservation. The research underscores LLM potential to democratize technical knowledge across disciplines but notes precision and multimodal integration limitations. Future directions include fine-tuning for domain-specific applications and expanding input modalities to enhance accessibility and efficiency in real-world technical tasks. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2026.
2026
Authors
Ribeiro, RP; Pfahringer, B; Japkowicz, N; Larrañaga, P; Jorge, AM; Soares, C; Abreu, PH; Gama, J;
Publication
ECML/PKDD (7)
Abstract
2026
Authors
Ribeiro, E; Pinto, T; Reis, A; Barroso, J;
Publication
Communications in Computer and Information Science - Computational Intelligence
Abstract
2026
Authors
Ribeiro, RP; Pfahringer, B; Japkowicz, N; Larrañaga, P; Jorge, AM; Soares, C; Abreu, PH; Gama, J;
Publication
ECML/PKDD (6)
Abstract
2026
Authors
Garcia Gonzalez, D; Nascimento, R; D. Rocha, C; F. Silva, M; Filipe, V; F. Rocha, L; Gonzaga Magalhães, L; Cunha, A;
Publication
The International Journal of Advanced Manufacturing Technology
Abstract
2026
Authors
Touati, Z; Araújo, RE; Khedher, A;
Publication
Studies in Systems, Decision and Control
Abstract
Switched Reluctance Motors (SRMs) are becoming increasingly popular for various applications, including automotive applications. However, challenges such as torque ripple and vibration persist, limiting their performance. This chapter investigates the application of intelligent control strategies, particularly fuzzy logic, to mitigate these issues. Fuzzy logic modeling does not require an accurate mathematical model which is very difficult to obtain from a SRM because of its inherit nonlinearities. In this work a Fuzzy Logic Controller (FLC) applied to the speed control of an SRM, highlighting the advantages of FL over traditional methods in terms of flexibility and performance. A comparison is made between the FLC, a Sliding Mode Control (SMC), and a Proportional Integral (PI) controller. Simulation results using MATLAB/Simulink show that the FLC substantially reduces torque ripple, offering better overall performance in terms of smoothness and robustness under varying operational conditions. The findings demonstrate that FLC offers a more effective solution than conventional approaches for SRM applications. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2026.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.