Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

2025

Semi-distributed optical fiber bending extensometer system for precision landslide monitoring based on OTDR

Authors
Santini, L; Caldas, P; Coelho, LC;

Publication
29th International Conference on Optical Fiber Sensors

Abstract

2025

CapyMOA: Efficient Machine Learning for Data Streams in Python

Authors
Gomes, HM; Lee, A; Gunasekara, N; Sun, Y; Cassales, GW; Liu, J; Heyden, M; Cerqueira, V; Bahri, M; Koh, YS; Pfahringer, B; Bifet, A;

Publication
CoRR

Abstract

2025

Flexible Wearable Optical Sensor Based on a Balloon-like Interferometer to Breathing Monitoring

Authors
Costa, N; Cardoso, HR; de Souza, FC; Caldas, P; Rocco Giraldi, MT; Frazão, O; Santos, L; Costa, CWA;

Publication
Proceedings of SPIE - The International Society for Optical Engineering

Abstract
A flexible wearable sensor utilizing a balloon-shaped interferometer structure, created from a bent standard single-mode fiber and a 3D-printed piece, was introduced and shown for respiratory monitoring. The interferometer is a compact, cost-effective, and easily fabricated sensor. The fiber’s curvature causes interference between the core and cladding modes, which in turn results in the sensor operation. In the balloon-shaped curving section, light traversing the core partially escapes and interacts with the cladding. The preliminary results demonstrate an average displacement of 9.3 nm and the capability to evaluate breathing rate. © 2025 SPIE.

2025

Contract Usage and Evolution in Android Mobile Applications

Authors
Ferreira, DR; Mendes, A; Ferreira, JF; Carreira, C;

Publication
39th European Conference on Object-Oriented Programming, ECOOP 2025, June 30 to July 2, 2025, Bergen, Norway

Abstract
Contracts and assertions are effective methods to enhance software quality by enforcing preconditions, postconditions, and invariants. Previous research has demonstrated the value of contracts in traditional software development. However, the adoption and impact of contracts in the context of mobile app development, particularly of Android apps, remain unexplored. To address this, we present the first large-scale empirical study on the use of contracts in Android apps, written in Java or Kotlin. We consider contract elements divided into five categories: conditional runtime exceptions, APIs, annotations, assertions, and other. We analyzed 2,390 Android apps from the F-Droid repository and processed 52,977 KLOC to determine 1) how and to what extent contracts are used, 2) which language features are used to denote contracts, 3) how contract usage evolves from the first to the last version, and 4) whether contracts are used safely in the context of program evolution and inheritance. Our findings include: 1) although most apps do not specify contracts, annotation-based approaches are the most popular; 2) apps that use contracts continue to use them in later versions, but the number of methods increases at a higher rate than the number of contracts; and 3) there are potentially unsafe specification changes when apps evolve and in subtyping relationships, which indicates a lack of specification stability. Finally, we present a qualitative study that gathers challenges faced by practitioners when using contracts and that validates our recommendations. © David R. Ferreira, Alexandra Mendes, João F. Ferreira, and Carolina Carreira.

2025

The Role of Deep Learning in Financial Asset Management: A Systematic Review

Authors
Reis, P; Serra, AP; Gama, J;

Publication
CoRR

Abstract

2025

Design and testing of a probe for diameter variation measurement based on fiber Bragg grating combined with additive manufacturing

Authors
Cardoso, VHR; Caldas, P; Giraldi, MTR; Fernandes, CS; Frazao, O; Costa, JCWA; Santos, JL;

Publication
SENSORS AND ACTUATORS A-PHYSICAL

Abstract
A sensor based on the fiber Bragg grating (FBG) and additive manufacturing for diameter variation measurement is proposed and experimentally demonstrated in this work. Two designs were proposed: a FBG alone and a FBG in series with a spring. Three tests were developed for each design, and at the end, the statistical treatment was performed. The designs were fabricated using a 3D printer, and the FBG sensor is embedded. The results demonstrated that the structures proposed in this work can be used to monitor diameter variation, among other applications. The sensors, with and without spring in series, presented sensitivities of 0.0671 nm/mm and 0.5116 nm/mm, respectively, with a good linear response greater than 0.99.

  • 24
  • 4201