Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

2016

Online Semi-supervised Learning for Multi-target Regression in Data Streams Using AMRules

Authors
Sousa, R; Gama, J;

Publication
ADVANCES IN INTELLIGENT DATA ANALYSIS XV

Abstract
Most data streams systems that use online Multi-target regression yield vast amounts of data which is not targeted. Targeting this data is usually impossible, time consuming and expensive. Semi-supervised algorithms have been proposed to use this untargeted data (input information only) for model improvement. However, most algorithms are adapted to work on batch mode for classification and require huge computational and memory resources. Therefore, this paper proposes an semi-supervised algorithm for online processing systems based on AMRules algorithm that handle both targeted and untargeted data and improves the regression model. The proposed method was evaluated through a comparison between a scenario where the untargeted examples are not used on the training and a scenario where some untargeted examples are used. Evaluation results indicate that the use of the untargeted examples improved the target predictions by improving the model.

2016

WorldFip

Authors
Vasques, F; Mirabella, O;

Publication
Industrial Communication Systems

Abstract

2016

Immersive Learning Research Network - Second International Conference, iLRN 2016, Santa Barbara, CA, USA, June 27 - July 1, 2016, Proceedings

Authors
Allison, C; Morgado, L; Pirker, J; Beck, D; Richter, J; Gütl, C;

Publication
iLRN

Abstract

2016

Agricultural Wireless Sensor Mapping for Robot Localization

Authors
Duarte, M; dos Santos, FN; Sousa, A; Morais, R;

Publication
ROBOT 2015: SECOND IBERIAN ROBOTICS CONFERENCE: ADVANCES IN ROBOTICS, VOL 1

Abstract
Crop monitoring and harvesting by ground robots in steep slope vineyards is an intrinsically complex challenge, due to two main reasons: harsh conditions of the terrain and reduced time availability and unstable localization accuracy of the Global Positioning System (GPS). In this paper the use of agricultural wireless sensors as artificial landmarks for robot localization is explored. The Received Signal Strength Indication (RSSI), of Bluetooth (BT) based sensors/technology, has been characterized for distance estimation. Based on this characterization, a mapping procedure based on Histogram Mapping concept was evaluated. The results allow us to conclude that agricultural wireless sensors can be used to support the robot localization procedures in critical moments (GPS blockage) and to create redundant localization information.

2016

Workshop message: Smart Vehicles 2016

Authors
Festag, A; Boban, M; Kenney, JB; Vilela, JP;

Publication
WoWMoM 2016 - 17th International Symposium on a World of Wireless, Mobile and Multimedia Networks

Abstract

2016

Effect of Incomplete Meta-dataset on Average Ranking Method

Authors
Abdulrahman, SM; Brazdil, P;

Publication
Proceedings of the 2016 Workshop on Automatic Machine Learning, AutoML 2016, co-located with 33rd International Conference on Machine Learning (ICML 2016), New York City, NY, USA, June 24, 2016

Abstract

  • 2282
  • 4201