Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

2018

Improving Audiovisual Content Annotation Through a Semi-automated Process Based on Deep Learning

Authors
Vilaça, L; Viana, P; Carvalho, P; Andrade, MT;

Publication
Proceedings of the Tenth International Conference on Soft Computing and Pattern Recognition, SoCPaR 2018, Porto, Portugal, December 13-15, 2018

Abstract
Over the last years, Deep Learning has become one of the most popular research fields of Artificial Intelligence. Several approaches have been developed to address conventional challenges of AI. In computer vision, these methods provide the means to solve tasks like image classification, object identification and extraction of features. In this paper, some approaches to face detection and recognition are presented and analyzed, in order to identify the one with the best performance. The main objective is to automate the annotation of a large dataset and to avoid the costy and time-consuming process of content annotation. The approach follows the concept of incremental learning and a R-CNN model was implemented. Tests were conducted with the objective of detecting and recognizing one personality within image and video content. Results coming from this initial automatic process are then made available to an auxiliary tool that enables further validation of the annotations prior to uploading them to the archive. Tests show that, even with a small size dataset, the results obtained are satisfactory. © 2020, Springer Nature Switzerland AG.

2018

Preface

Authors
Moreira, AC; Ferreira, LMDF; Zimmermann, RA;

Publication
Contributions to Management Science

Abstract

2018

Effects of PEV Traffic Flows on the Operation of Parking Lots and Charging Stations

Authors
Neyestani, N; Damavandi, MY; Chicco, G; Catalao, JPS;

Publication
IEEE TRANSACTIONS ON SMART GRID

Abstract
The introduction of plug-in electric vehicles (PEVs) in the electrical system is bringing various challenges. The main issue is incorporating the PEV owner's preferences in the models. One of the main attributes representing the preference of the owners is their travel purposes, impacting on the traffic flow pattern. The PEVs' traffic pattern defines the required charging schedule of the PEVs, and consequently, characterizes the operation of the charging facilities such as PEV parking lots (PLs). The deployment of resources such as PEV PL requires a detailed modeling of the factors affecting their operation. In this regard, this paper aims to model the power flow of the PEVs based on their traffic flow. Different travel types and purposes are considered for the PEVs traffic modeling. Two types of charging infrastructure (i.e., PLs and individual charging stations) are considered. The study is performed on a distribution network categorized based on the consumption patterns of the zones.

2018

Delta State replicated data types

Authors
Almeida, PS; Shoker, A; Baquero, C;

Publication
JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING

Abstract
Conflict-free Replicated Data Types (CRDTs) are distributed data types that make eventual consistency of a distributed object possible and non ad-hoc. Specifically, state-based CRDTs ensure convergence through disseminating the entire state, that may be large, and merging it to other replicas. We introduce Delta State Conflict-Free Replicated Data Types (delta-CRDT) that can achieve the best of both operation-based and state-based CRDTs: small messages with an incremental nature, as in operation-based CRDTs, disseminated over unreliable communication channels, as in traditional state-based CRDTs. This is achieved by defining delta-mutators to return a delta-state, typically with a much smaller size than the full state, that to be joined with both local and remote states. We introduce the delta-CRDT framework, and we explain it through establishing a correspondence to current state-based CRDTs. In addition, we present an anti-entropy algorithm for eventual convergence, and another one that ensures causal consistency. Finally, we introduce several delta-CRDT specifications of both well-known replicated datatypes and novel datatypes, including a generic map composition.

2018

Graphlet-orbit Transitions (GoT): A fingerprint for temporal network comparison

Authors
Aparicio, D; Ribeiro, P; Silva, F;

Publication
PLOS ONE

Abstract
Given a set of temporal networks, from different domains and with different sizes, how can we compare them? Can we identify evolutionary patterns that are both (i) characteristic and (ii) meaningful? We address these challenges by introducing a novel temporal and topological network fingerprint named Graphlet-orbit Transitions (GoT). We demonstrate that GoT provides very rich and interpretable network characterizations. Our work puts forward an extension of graphlets and uses the notion of orbits to encapsulate the roles of nodes in each subgraph. We build a transition matrix that keeps track of the temporal trajectory of nodes in terms of their orbits, therefore describing their evolution. We also introduce a metric (OTA) to compare two networks when considering these matrices. Our experiments show that networks representing similar systems have characteristic orbit transitions. GoT correctly groups synthetic networks pertaining to well-known graph models more accurately than competing static and dynamic state-of-the-art approaches by over 30%. Furthermore, our tests on real-world networks show that GoT produces highly interpretable results, which we use to provide insight into characteristic orbit transitions.

2018

Analysing the Footprint of Classifiers in Overlapped and Imbalanced Contexts

Authors
Mercier, M; Santos, MS; Abreu, PH; Soares, C; Soares, JP; Santos, J;

Publication
Advances in Intelligent Data Analysis XVII - 17th International Symposium, IDA 2018, 's-Hertogenbosch, The Netherlands, October 24-26, 2018, Proceedings

Abstract
It is recognised that the imbalanced data problem is aggravated by other difficulty factors, such as class overlap. Over the years, several research works have focused on this problematic, although presenting two major hitches: the limitation of test domains and the lack of a formulation of the overlap degree, which makes results hard to generalise. This work studies the performance degradation of classifiers with distinct learning biases in overlap and imbalanced contexts, focusing on the characteristics of the test domains (shape, dimensionality and imbalance ratio) and on to what extent our proposed overlapping measure (degOver) is aligned with the performance results observed. Our results show that MLP and CART classifiers are the most robust to high levels of class overlap, even for complex domains, and that KNN and linear SVM are the most aligned with degOver. Furthermore, we found that the dimensionality of data also plays an important role in explaining performance results. © Springer Nature Switzerland AG 2018.

  • 1819
  • 4208