2018
Authors
Gonçalves, F; Carneiro, D; Pêgo, JM; Novais, P;
Publication
Ambient Intelligence - Software and Applications -, 9th International Symposium on Ambient Intelligence, ISAmI 2018, Toledo, Spain, 20-22 June 2018
Abstract
More and more technological advances offer new paradigms for training, allowing novel forms of teaching and learning to be devised. A widely accepted prediction is that computing will move to the background, weaving itself into the fabric of our everyday living spaces and projecting the human user into the foreground. This forecast turns out to be an opportunity for human-computer interaction as a way to monitor and assess the user’s stress levels during high-risk tasks. The main effects of stress are increased physiological arousal, somatic complaints, mood disturbances (anxiety, fear and anger) and diminished quality of working life (e.g. reduced job satisfaction). To mitigate these problems, it is necessary to detect stressful users and apply coping measures to manage stress. Human-computer interaction could be improved by having machines naturally monitor their users’ stress, in a non-invasive and non-intrusive way. This article discusses the development of a random forest classifier with the goal of enabling the assessment of high school students’ stress during academic exams, through the analysis of mouse behaviour and decision-making patterns. © Springer Nature Switzerland AG 2019.
2018
Authors
Matuszyk, P; Vinagre, J; Spiliopoulou, M; Jorge, AM; Gama, J;
Publication
KNOWLEDGE AND INFORMATION SYSTEMS
Abstract
Forgetting is often considered a malfunction of intelligent agents; however, in a changing world forgetting has an essential advantage. It provides means of adaptation to changes by removing effects of obsolete (not necessarily old) information from models. This also applies to intelligent systems, such as recommender systems, which learn users' preferences and predict future items of interest. In this work, we present unsupervised forgetting techniques that make recommender systems adapt to changes of users' preferences over time. We propose eleven techniques that select obsolete information and three algorithms that enforce the forgetting in different ways. In our evaluation on real-world datasets, we show that forgetting obsolete information significantly improves predictive power of recommender systems.
2018
Authors
Meyer, MI; Galdran, A; Costa, P; Mendonça, AM; Campilho, A;
Publication
Image Analysis and Recognition - 15th International Conference, ICIAR 2018, Póvoa de Varzim, Portugal, June 27-29, 2018, Proceedings
Abstract
The classification of retinal vessels into arteries and veins in eye fundus images is a relevant task for the automatic assessment of vascular changes. This paper presents a new approach to solve this problem by means of a Fully-Connected Convolutional Neural Network that is specifically adapted for artery/vein classification. For this, a loss function that focuses only on pixels belonging to the retinal vessel tree is built. The relevance of providing the model with different chromatic components of the source images is also analyzed. The performance of the proposed method is evaluated on the RITE dataset of retinal images, achieving promising results, with an accuracy of 96 % on large caliber vessels, and an overall accuracy of 84 %. © 2018, Springer International Publishing AG, part of Springer Nature.
2018
Authors
Cherri, LH; Cherri, AC; Carravilla, MA; Oliveira, JF; Bragion Toledo, FMB; Goncalves Vianna, ACG;
Publication
INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH
Abstract
As in many other combinatorial optimisation problems, research on nesting problems (aka irregular packing problems) has evolved around the dichotomy between continuous (time consuming) and discrete (memory consuming) representations of the solution space. Recent research has been devoting increasing attention to discrete representations for the geometric layer of nesting problems, namely in mathematical programming-based approaches. These approaches employ conventional regular meshes, and an increase in their precision has a high computational cost. In this paper, we propose a data structure to represent non-regular meshes, based on the geometry of each piece. It supports non-regular discrete geometric representations of the shapes, and by means of the proposed data structure, the discretisation can be easily adapted to the instances, thus overcoming the precision loss associated with discrete representations and consequently allowing for a more efficient implementation of search methods for the nesting problem. Experiments are conducted with the dotted-board model - a recently published mesh-based binary programming model for nesting problems. In the light of both the scale of the instances, which are now solvable, and the quality of the solutions obtained, the results are very promising.
2018
Authors
Pinto, MM;
Publication
Revista Ibero-Americana de Ciência da Informação
Abstract
2018
Authors
Gama, J;
Publication
MATEC Web of Conferences
Abstract
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.