2019
Authors
Santos, MS; Pereira, RC; Costa, AF; Soares, JP; Santos, J; Abreu, PH;
Publication
IEEE ACCESS
Abstract
The performance evaluation of imputation algorithms often involves the generation of missing values. Missing values can be inserted in only one feature (univariate configuration) or in several features (multivariate configuration) at different percentages (missing rates) and according to distinct missing mechanisms, namely, missing completely at random, missing at random, and missing not at random. Since the missing data generation process defines the basis for the imputation experiments (configuration, missing rate, and missing mechanism), it is essential that it is appropriately applied; otherwise, conclusions derived from ill-defined setups may be invalid. The goal of this paper is to review the different approaches to synthetic missing data generation found in the literature and discuss their practical details, elaborating on their strengths and weaknesses. Our analysis revealed that creating missing at random and missing not at random scenarios in datasets comprising qualitative features is the most challenging issue in the related work and, therefore, should be the focus of future work in the field.
2019
Authors
Diogo, CC; da Costa, LM; Pereira, JE; Filipe, V; Couto, PA; Geuna, S; Armada da Silva, PA; Mauricio, AC; Varejao, ASP;
Publication
NEUROSCIENCE AND BIOBEHAVIORAL REVIEWS
Abstract
The recovery of walking function following spinal cord injury (SCI) is of major importance to patients and clinicians. In experimental SCI studies, a rat model is widely used to assess walking function, following thoracic spinal cord lesion. In an effort to provide a resource which investigators can refer to when seeking the most appropriate functional assay, the authors have compiled and categorized the behavioral assessments used to measure the deficits and recovery of the gait in thoracic SCI rats. These categories include kinematic and kinetic measurements. Within this categorization, we discuss the advantages and disadvantages of each type of measurement. The present review includes the type of outcome data that they produce, the technical difficulty and the time required to potentially train the animals to perform them, and the need for expensive or highly specialized equipment. The use of multiple kinematic and kinetic parameters is recommended to identify subtle deficits and processes involved in the compensatory mechanisms of walking function after experimental thoracic SCI in rats.
2019
Authors
Gomes, D; Mendes Moreira, J; Sousa, I; Silva, J;
Publication
SENSORS
Abstract
The increasingly aging society in developed countries has raised attention to the role of technology in seniors' lives, namely concerning isolation-related issues. Independent seniors that live alone frequently neglect meals, hydration and proper medication-taking behavior. This work aims at eating and drinking recognition in free-living conditions for triggering smart reminders to autonomously living seniors, keeping system design considerations, namely usability and senior-acceptance criteria, in the loop. To that end, we conceived a new dataset featuring accelerometer and gyroscope wrist data to conduct the experiments. We assessed the performance of a single multi-class classification model when compared against several binary classification models, one for each activity of interest (eating vs. non-eating; drinking vs. non-drinking). Binary classification models performed consistently better for all tested classifiers (k-NN, Naive Bayes, Decision Tree, Multilayer Perceptron, Random Forests, HMM). This evidence supported the proposal of a semi-hierarchical activity recognition algorithm that enabled the implementation of two distinct data stream segmentation techniques, the customization of the classification models of each activity of interest and the establishment of a set of restrictions to apply on top of the classification output, based on daily evidence. An F1-score of 97% was finally attained for the simultaneous recognition of eating and drinking in an all-day acquisition from one young user, and 93% in a test set with 31 h of data from 5 different unseen users, 2 of which were seniors. These results were deemed very promising towards solving the problem of food and fluids intake monitoring with practical systems which shall maximize user-acceptance.
2019
Authors
Adão, T; Pinho, TM; Pádua, L; Santos, N; Sousa, A; Sousa, JJ; Peres, E;
Publication
International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives
Abstract
Today's climatic proneness to extreme conditions together with human activity have been triggering a series of wildfire-related events that put at risk ecosystems, as well as animal and vegetal patrimony, while threatening dwellers nearby rural or urban areas. When intervention teams-firefighters, civil protection, police-acknowledge these events, usually they have already escalated to proportions hardly controllable mainly due wind gusts, fuel-like solo conditions, among other conditions that propitiate fire spreading. Currently, there is a wide range of camera-capable sensing systems that can be complemented with useful location data-for example, unmanned aerial systems (UAS) integrated cameras and IMU/GPS sensors, stationary surveillance systems-and processing components capable of fostering wildfire events detection and monitoring, thus providing accurate and faithful data for decision support. Precisely in what concerns to detection and monitoring, Deep Learning (DL) has been successfully applied to perform tasks involving classification and/or segmentation of objects of interest in several fields, such as Agriculture, Forestry and other similar areas. Usually, for an effective DL application, more specifically, based on imagery, datasets must rely on heavy and burdensome logistics to gather a representative problem formulation. What if putting together a dataset could be supported in customizable virtual environments, representing faithful situations to train machines, as it already occurs for human training in what regards some particular tasks (rescue operations, surgeries, industry assembling, etc.)? This work intends to propose not only a system to produce faithful virtual environments to complement and/or even supplant the need for dataset gathering logistics while eventually dealing with hypothetical proposals considering climate change events, but also to create tools for synthesizing wildfire environments for DL application. It will therefore enable to extend existing fire datasets with new data generated by human interaction and supervision, viable for training a computational entity. To that end, a study is presented to assess at which extent data virtually generated data can contribute to an effective DL system aiming to identify and segment fire, bearing in mind future developments of active monitoring systems to timely detect fire events and hopefully provide decision support systems to operational teams. © 2019 International Society for Photogrammetry and Remote Sensing.
2019
Authors
Ferreira, JC; Palumbo, F;
Publication
JOURNAL OF SIGNAL PROCESSING SYSTEMS FOR SIGNAL IMAGE AND VIDEO TECHNOLOGY
Abstract
2019
Authors
Valerio, MT; Gomes, S; Salgado, M; Oliveira, HP; Cunha, A;
Publication
CENTERIS2019--INTERNATIONAL CONFERENCE ON ENTERPRISE INFORMATION SYSTEMS/PROJMAN2019--INTERNATIONAL CONFERENCE ON PROJECT MANAGEMENT/HCIST2019--INTERNATIONAL CONFERENCE ON HEALTH AND SOCIAL CARE INFORMATION SYSTEMS AND TECHNOLOGIES
Abstract
Wireless capsule endoscopy is a relatively novel technique used for imaging of the gastrointestinal tract. Unlike traditional approaches, it allows painless visualisation of the whole of the gastrointestinal tract, including the small bowel, a region of difficult access. Endoscopic capsules record for about 8h, producing around 60,000 images. These are analysed by an expert that identifies abnormalities present in the frames, a process that is very tedious and prone to errors. Thus there is a clear need to develop systems that automatically analyse this data and detect lesions. Lesion detection achieved a precision of 0.94 and a recall of 0.93 by fmetuning the pre-trained DenseNet-161 model. (C) 2019 The Authors. Published by Elsevier B.V.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.