Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Interest
Topics
Details

Details

  • Name

    Vítor Tinoco
  • Since

    15th January 2021
002
Publications

2025

Review on Upper-Limb Exoskeletons

Authors
Pires, A; dos Santos, FN; Tinoco, V;

Publication
MACHINES

Abstract
Even for the strongest human being, maintaining an elevated arm position for an extended duration represents a significant challenge, as fatigue inevitably accumulates over time. The physical strain is further intensified when the individual is engaged in repetitive tasks, particularly those involving the use of tools or heavy equipment. Such activities increase the probability of developing muscle fatigue or injuries due to overuse or improper posture. Over time, this can result in the development of chronic conditions, which may impair the individual's ability to perform tasks effectively and potentially lead to long-term physical impairment. Exoskeletons play a transformative role by reducing the perceived load on the muscles and providing mechanical support, mitigating the risk of injuries and alleviating the physical burden associated with strenuous activities. In addition to injury prevention, these devices also promise to facilitate the rehabilitation of individuals who have sustained musculoskeletal injuries. This document examines the various types of exoskeletons, investigating their design, functionality, and applications. The objective of this study is to present a comprehensive understanding of the current state of these devices, highlighting advancements in the field and evaluating their real-world impact. Furthermore, it analyzes the crucial insights obtained by other researchers, and by summarizing these findings, this work aims to contribute to the ongoing efforts to enhance exoskeleton performance and expand their accessibility across different sectors, including agriculture, healthcare, industrial work, and beyond.

2025

Benchmarking Controllers for Low-Cost Agricultural SCARA Manipulators

Authors
Tinoco, V; Silva, MF; dos Santos, FN; Morais, R;

Publication
SENSORS

Abstract
Agriculture needs to produce more with fewer resources to satisfy the world's demands. Labor shortages, especially during harvest seasons, emphasize the need for agricultural automation. However, the high cost of commercially available robotic manipulators, ranging from EUR 3000 to EUR 500,000, is a significant barrier. This research addresses the challenges posed by low-cost manipulators, such as inaccuracy, limited sensor feedback, and dynamic uncertainties. Three control strategies for a low-cost agricultural SCARA manipulator were developed and benchmarked: a Sliding Mode Controller (SMC), a Reinforcement Learning (RL) Controller, and a novel Proportional-Integral (PI) controller with a self-tuning feedforward element (PIFF). The results show the best response time was obtained using the SMC, but with joint movement jitter. The RL controller showed sudden breaks and overshot upon reaching the setpoint. Finally, the PIFF controller showed the smoothest reference tracking but was more susceptible to changes in system dynamics.

2025

A review of advanced controller methodologies for robotic manipulators

Authors
Tinoco, V; Silva, MF; Santos, FN; Morais, R; Magalhaes, SA; Oliveira, PM;

Publication
INTERNATIONAL JOURNAL OF DYNAMICS AND CONTROL

Abstract
With the global population on the rise and a declining agricultural labor force, the realm of robotics research in agriculture, such as robotic manipulators, has assumed heightened significance. This article undertakes a comprehensive exploration of the latest advancements in controllers tailored for robotic manipulators. The investigation encompasses an examination of six distinct controller paradigms, complemented by the presentation of three exemplars for each category. These paradigms encompass: (i) adaptive control, (ii) sliding mode control, (iii) model predictive control, (iv) robust control, (v) fuzzy logic control and (vi) neural network control. The article further introduces and presents comparative tables for each controller category. These controllers excel in tracking trajectories and efficiently reaching reference points with rapid convergence. The key point of divergence among these controllers resides in their inherent complexity.

2025

Pruning End-Effectors State of the Art Review

Authors
Oliveira, F; Tinoco, V; Valente, A; Pinho, T; Cunha, JB; Santos, FN;

Publication
PROGRESS IN ARTIFICIAL INTELLIGENCE, EPIA 2024, PT I

Abstract
Pruning consists on an agricultural trimming procedure that is crucial in some species of plants to promote healthy growth and increased yield. Generally, this task is done through manual labour, which is costly, physically demanding, and potentially dangerous for the worker. Robotic pruning is an automated alternative approach to manual labour on this task. This approach focuses on selective pruning and requires the existence of an end-effector capable of detecting and cutting the correct point on the branch to achieve efficient pruning. This paper reviews and analyses different end-effectors used in robotic pruning, which helped to understand the advantages and limitations of the different techniques used and, subsequently, clarified the work required to enable autonomous pruning.

2023

Design and Control Architecture of a Triple 3 DoF SCARA Manipulator for Tomato Harvesting

Authors
Tinoco, V; Silva, MF; Santos, FN; Magalhaes, S; Morais, R;

Publication
2023 IEEE INTERNATIONAL CONFERENCE ON AUTONOMOUS ROBOT SYSTEMS AND COMPETITIONS, ICARSC

Abstract
The increasing world population, growing need for agricultural products, and labour shortages have driven the growth of robotics in agriculture. Tasks such as fruit harvesting require extensive hours of work during harvest periods and can be physically exhausting. Autonomous robots bring more efficiency to agricultural tasks with the possibility of working continuously. This paper proposes a stackable 3 DoF SCARA manipulator for tomato harvesting. The manipulator uses a custom electronic circuit to control DC motors with an endless gear at each joint and uses a camera and a Tensor Processing Unit (TPU) for fruit detection. Cascaded PID controllers are used to control the joints with magnetic encoders for rotational feedback, and a time-of-flight sensor for prismatic movement feedback. Tomatoes are detected using an algorithm that finds regions of interest with the red colour present and sends these regions of interest to an image classifier that evaluates whether or not a tomato is present. With this, the system calculates the position of the tomato using stereo vision obtained from a monocular camera combined with the prismatic movement of the manipulator. As a result, the manipulator was able to position itself very close to the target in less than 3 seconds, where an end-effector could adjust its position for the picking.