Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
About

About

PhD in Industrial Engineering and Management, in FEUP (Faculty of Engineering of the University of Porto) and a researcher at INESC TEC. My main field of research is Operations Research and Management Science. I’m studying the retailers supply chain planning, more specifically the distribution process. From the techniques viewpoint, I have been using and developing mathematical models and metaheuristic approaches.

Interest
Topics
Details

Details

004
Publications

2022

On the impact of adjusting the minimum life on receipt (MLOR) criterion in food supply chains

Authors
Santos, MJ; Martins, S; Amorim, P; Almada Lobo, B;

Publication
OMEGA-INTERNATIONAL JOURNAL OF MANAGEMENT SCIENCE

Abstract
The Minimum Life on Receipt (MLOR) is a widely used rule that imposes the minimum remaining age a food product must be delivered by the producer to the retailer. In practice, this rule is set by retailers and it is fixed, around 2/3 of the age of products regardless their shelf life. In this work, we study single and two echelon make-to-stock production-inventory problems for fixed-lifetime perishables. Mixed-integer linear optimization models are developed considering the MLOR rule both as decision variable and fixed parameter. When the MLOR rule is a variable, it is considered either a sole decision of the producer or a collaborative decision between retailer and producer. The goal of this work is to compare the supply chain performance considering this innovative setting of optimal MLOR (as a variable) against the traditional setting of fixed MLOR rule. The computational results suggest that allowing flexible MLOR rules according to the shelf life of products and the operational requirements of the producer benefit both entities in the supply chain. In particular, reducing the MLOR requirement in up to 12% does not interfere substantially with the average freshness of products arriving to the retailer, but reduces extensively surplus/waste generation at the producer while keeping a small amount of waste at the retailer.

2021

A green lateral collaborative problem under different transportation strategies and profit allocation methods

Authors
Joa, M; Martins, S; Amorim, P; Almada Lobo, B;

Publication
JOURNAL OF CLEANER PRODUCTION

Abstract
Collaboration between companies in transportation problems seeks to reduce empty running of vehicles and to increase the use of vehicles' capacity. Motivated by a case study in the food supply chain, this paper examines a lateral collaboration between a leading retailer (LR), a third party logistics provider (3 PL) and different producers. Three collaborative strategies may be implemented simultaneously, namely pickup-delivery, collection and cross-docking. The collaborative pickup-delivery allows an entity to serve customers of another in the backhaul trips of the vehicles. The collaborative collection allows loads to be picked up at the producers in the backhauling routes of the LR and the 3 PL, instead of the traditional outsourcing. The collaborative cross-docking allows the producers to cross-dock their cargo at the depot of another entity, which is then consolidated and shipped with other loads, either in linehaul or backhaul routes. The collaborative problem is formulated with three different objective functions: minimizing total operational costs, minimizing total fuel consumption and minimizing operational and CO2 emissions costs. The synergy value of collaborative solutions is assessed in terms of costs and environmental impact. Three proportional allocation methods from the literature are used to distribute the collaborative gains among the entities, and their limitations and capabilities to attend fairness criteria are analyzed. Collaboration is able to reduce the global fuel consumption in 26% and the global operational costs in 28%, independently of the objective function used to model the problem. The collaborative pickup-delivery strategy outperforms the other two in the majority of instances under different objectives and parameter settings. The collaborative collection is favoured when the ordering loads from producers increase. The collaborative cross-docking tends to be implemented when the producers are located close to the depot of the 3 PL.

2019

Consistent Consolidation Strategies in Grocery Retail Distribution

Authors
Martins, S; Amorim, P; Almada Lobo, B;

Publication
Springer Proceedings in Mathematics and Statistics

Abstract
In the food retail sector, maintaining the food quality across the supply chain is of vital importance. The quality of the products is dependent on its storage and transportation conditions and this peculiarity increases the supply chain complexity relatively to other types of retailers. Actually, in this industry there are three types of food supply chains: frozen, chilled and ambient. Moreover, food retailers run different store formats, of different sizes, assortments and sales volume. In this study we research the trade-off between consolidating a range of products in order to perform direct deliveries to the stores versus performing separate delivery routes for products with different transportation requirements. A new consistency dimension is proposed regarding the periodicity that a consolidation strategy is implemented. The aim of this paper is to define a consolidation strategy for the delivery mode planning that allows to smooth the complexity of grocery retail operations. A three-step approach is proposed to tackle a real size problem in a case-study with a major Portuguese grocery retailer. By changing the consolidation strategy with a complete consistent plan the company could reach annual savings of around 4%. © 2019, Springer Nature Switzerland AG.

2019

Product-oriented time window assignment for a multi-compartment vehicle routing problem

Authors
Martins, S; Ostermeier, M; Amorim, P; Huebner, A; Almada Lobo, B;

Publication
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH

Abstract

2018

Loading constraints for a multi-compartment vehicle routing problem

Authors
Ostermeier, M; Martins, S; Amorim, P; Huebner, A;

Publication
OR SPECTRUM

Abstract
Multi-compartment vehicles (MCVs) can deliver several product segments jointly. Separate compartments are necessary as each product segment has its own specific characteristics and segments cannot be mixed during transportation. The size and position of the compartments can be adjusted for each tour with the use of flexible compartments. However, this requires that the compartments can be accessed for loading/unloading. The layout of the compartments is defined by the customer and segment sequence, and it needs to be organized in a way that no blocking occurs during loading/unloading processes. Routing and loading layouts are interdependent for MCVs. This paper addresses such loading/unloading issues raised in the distribution planning when using MCVs with flexible compartments, loading from the rear, and standardized transportation units. The problem can therefore be described as a two-dimensional loading and multi-compartment vehicle routing problem (2L-MCVRP). We address the problem of obtaining feasible MCV loading with minimal routing, loading and unloading costs. We define the loading problem that configures the compartment setup. Consequently, we develop a branch-and-cut (B&C) algorithm as an exact approach and extend a large neighborhood search (LNS) as a heuristic approach. In both cases, we use the loading model in order to verify the feasibility of the tours and to assess the problem as a routing and loading problem. The loading model dictates the cuts to be performed in the B&C, and it is used as a repair mechanism in the LNS. Numerical studies show that the heuristic reaches the optimal solution for small instances and can be applied efficiently to larger problems. Additionally, further tests on large instances enable us to derive general rules regarding the influence of loading constraints. Our results were validated in a case study with a European retailer. We identified that loading constraints matter even for small instances. Feasible loading can often be achieved only through minor changes to the routing solution and therefore with limited additional costs. Further, the importance to integrate loading constraints grows as the problem size increases, especially when a heterogeneous mix of segments is ordered. © 2018 Springer-Verlag GmbH Germany, part of Springer Nature

Supervised
thesis

2019

Delivery Time Slot Management Methods in Online Retail

Author
Armando Silvestre Loureiro Peixoto

Institution
UP-FEUP

2019

Transporte Colaborativo na Cadeia de Abastecimento Agroalimentar

Author
José Pedro Rodrigues Caires

Institution
UP-FEUP

2019

Analysis of Waste Management Processes of Fruits and Vegetables in a Food Retailer

Author
Ana Sofia Pereira do Carmo Figueiredo

Institution
UP-FEUP

2019

The Impact of the "Minimum Life on Receipt" Criteria in Supply Chains of Perishable Products

Author
José Maria Lencastre Marinho da Cunha

Institution
UP-FEUP

2019

Algorithm design for the fleet sizing problem in grocery retail distribution

Author
Tiago Miguel Ladeiras Beleza de Vasconcelos

Institution
UP-FEUP