Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
About
Download Photo HD

About

Born at Porto, Portugal, April  6, 1973, received the M.Sc.in Electrical and Computer Engineering on Faculty of Engineering of University of Porto, Portugal in 1999. He obtained a Ph.D. in Electrical and Computer Engineering on Faculty of Engineering of University of Porto in the area of Control and Robotics, with the thesis “Planning Cooperative tasks and trajectories in Multiple Robots” in 2011. Presently he is a Professor at Computers and Electrical Engineering Department of the Oporto University. He is also a researcher in Robotic and Intelligent Systems of the INESC-TEC (Institute for Systems and Computer Engineering of Porto, Portugal). His research interests are in the ï¬�eld of robotics and automation: path planning, obstacle avoidance, simulation, navigation, manipulator, mobile manipulators. 

Interest
Topics
Details

Details

008
Publications

2022

Path Planning with Hybrid Maps for processing and memory usage optimisation

Authors
Santos, LC; Santos, FN; Aguiar, AS; Valente, A; Costa, P;

Publication
2022 IEEE INTERNATIONAL CONFERENCE ON AUTONOMOUS ROBOT SYSTEMS AND COMPETITIONS (ICARSC)

Abstract

2022

Bin Picking Approaches Based on Deep Learning Techniques: A State-of-the-Art Survey

Authors
Cordeiro, A; Rocha, LF; Costa, C; Costa, P; Silva, MF;

Publication
2022 IEEE INTERNATIONAL CONFERENCE ON AUTONOMOUS ROBOT SYSTEMS AND COMPETITIONS (ICARSC)

Abstract

2021

Micromouse 3D simulator with dynamics capability: a Unity environment approach

Authors
Zawadniak, PVF; Piardi, L; Brito, T; Lima, J; Costa, P; Monteiro, ALR; Costa, P; Pereira, AI;

Publication
SN APPLIED SCIENCES

Abstract
The micromouse competition has been gaining prominence in the robotic atmosphere, due to the challenging and multidisciplinary characteristics provided by the teams' duels, being a gateway for those who intend to deepen their studies in autonomous robotics. In this context, this paper presents a realistic micromouse simulator developed with Unity software, a widely game engine with dynamics and 3D development platform used. The developed simulator has hardware-in-the-loop capabilities, aims to be simple to use, it can be customizable, and designed to be as similar as possible to the real robot configurations. In this way, the proposed simulator requires few modifications to port the microcontroller code to a real robot. Therefore, the framework presented in this work allows the user to simulate the development of new algorithm strategies dedicated to competition and also hardware updates. The simulation supports several mazes, from previous competitions and has the possibility to add different mazes elaborated by the user. Thus, the features and functionality of the simulator can serve to accelerate the project's development of the beginning and advanced competitors, using real models to reduce the gap between the mouse robot behavior in the simulation and the reality. The developed simulation environment is available to the community.

2021

Multi AGV Coordination Tolerant to Communication Failures

Authors
Matos, D; Costa, P; Lima, J; Costa, P;

Publication
ROBOTICS

Abstract
Most path planning algorithms used presently in multi-robot systems are based on offline planning. The Timed Enhanced A* (TEA*) algorithm gives the possibility of planning in real time, rather than planning in advance, by using a temporal estimation of the robot’s positions at any given time. In this article, the implementation of a control system for multi-robot applications that operate in environments where communication faults can occur and where entire sections of the environment may not have any connection to the communication network will be presented. This system uses the TEA* to plan multiple robot paths and a supervision system to control communications. The supervision system supervises the communication with the robots and checks whether the robot’s movements are synchronized. The implemented system allowed the creation and execution of paths for the robots that were both safe and kept the temporal efficiency of the TEA* algorithm. Using the Simtwo2020 simulation software, capable of simulating movement dynamics and the Lazarus development environment, it was possible to simulate the execution of several different missions by the implemented system and analyze their results.

2021

A* Based Routing and Scheduling Modules for Multiple AGVs in an Industrial Scenario

Authors
Santos, J; Rebelo, PM; Rocha, LF; Costa, P; Veiga, G;

Publication
ROBOTICS

Abstract
A multi-AGV based logistic system is typically associated with two fundamental problems, critical for its overall performance: the AGV’s route planning for collision and deadlock avoidance; and the task scheduling to determine which vehicle should transport which load. Several heuristic functions can be used according to the application. This paper proposes a time-based algorithm to dynamically control a fleet of Autonomous Guided Vehicles (AGVs) in an automatic warehouse scenario. Our approach includes a routing algorithm based on the A* heuristic search (TEA*—Time Enhanced A*) to generate free-collisions paths and a scheduling module to improve the results of the routing algorithm. These modules work cooperatively to provide an efficient task execution time considering as basis the routing algorithm information. Simulation experiments are presented using a typical industrial layout for 10 and 20 AGVs. Moreover, a comparison with an alternative approach from the state-of-the-art is also presented.

Supervised
thesis

2021

Robotic Welding Optimization using A* Parallel Path Planning and Advanced Machine Learning

Author
Tiago Martins Couto

Institution
UP-FEUP

2021

Human Operator Tracking System for Safe Industrial Collaborative Robotics

Author
Eduardo João Caldas da Fonseca

Institution
UP-FEUP

2021

Multi AGV Communication Failure Tolerant Industrial Supervisory System

Author
Ana Sofia Poças da Silva Cruz

Institution
UP-FEUP

2021

Previsão de compras através de link prediction em redes bipartidas e unipartidas o caso prático da Amazon

Author
Inês Silva Fernandes

Institution
UP-FEP

2021

Leveraging Supplier Selection Within Supply Chain Management Under Uncertainty

Author
Thomy Eko Saputro

Institution
UP-FEUP