Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
About

About

Manuel Alberto Pereira Ricardo has Licenciatura, M.Sc. and PhD (2000) degrees in Electrical and Computer Engineering (EEC), major of Telecommunications, from the Faculty of Engineering of the University of Porto (FEUP). Manuel Ricardo is currently a full professor at FEUP where he teaches courses on Mobile Communications and Computer Networks at FEUP. He is a member of the Executive Committee of his department (EEC) and member of the Scientific Committee of the Doctoral Program in Electrical and Computer Engineering. At INESC TEC, he coordinated the Wireless Networks area (2001-2011), the Center for Telecommunications and Multimedia (2011-2018), was member of the Board of Directors (2018-2021), and is currently an associate director focused on telecommunications. He created the Portuguese Thematic Network on Mobile Communications (RTCM, 2004). He is a member of the Steering Committee of the ns-3 communications network simulator consortium. He participated in 30+ research projects and has 150+ articles published. His research areas are mobile communications networks, quality of service, radio resource management, network congestion control, traffic characterization and performance assessment.

Details

Details

  • Name

    Manuel Ricardo
  • Role

    TEC4 Coordinator
  • Since

    01st January 1996
028
Publications

2025

Joint Mobile Iab Node Positioning and Scheduler Selection in Locations with Significant Obstacles

Authors
Correia, PF; Coelho, A; Ricardo, M;

Publication
Joint European Conference on Networks and Communications & 6G Summit, EuCNC/6G Summit 2025, Poznan, Poland, June 3-6, 2025

Abstract

2025

A Vision-aided Open Radio Access Network for Obstacle-aware Wireless Connectivity

Authors
Simões, C; Coelho, A; Ricardo, M;

Publication
20th Wireless On-Demand Network Systems and Services Conference, WONS 2025, Hintertux, Austria, January 27-29, 2025

Abstract
High-frequency radio networks, including those operating in the millimeter-wave bands, are sensible to Line-of-Sight (LoS) obstructions. Computer Vision (CV) algorithms can be leveraged to improve network performance by processing and interpreting visual data, enabling obstacle avoidance and ensuring LoS signal propagation. We propose a vision-aided Radio Access Network (RAN) based on the O-RAN architecture and capable of perceiving the surrounding environment. The vision-aided RAN consists of a gNodeB (gNB) equipped with a video camera that employs CV techniques to extract critical environmental information. An xApp is used to collect and process metrics from the RAN and receive data from a Vision Module (VM). This enhances the RAN's ability to perceive its surroundings, leading to better connectivity in challenging environments. © 2025 IFIP.

2025

A Framework to Develop and Validate RL-Based Obstacle-Aware UAV Positioning Algorithms

Authors
Shafafi, K; Ricardo, M; Campos, R;

Publication
CoRR

Abstract

2024

Vision-Radio Experimental Infrastructure Architecture Towards 6G

Authors
Teixeira, FB; Ricardo, M; Coelho, A; Oliveira, HP; Viana, P; Paulino, N; Fontes, H; Marques, P; Campos, R; Pessoa, LM;

Publication
CoRR

Abstract

2024

Autonomous Control and Positioning of a Mobile Radio Access Node Employing the O-RAN Architecture

Authors
Queirós, G; Correia, P; Coelho, A; Ricardo, M;

Publication
2024 19TH WIRELESS ON-DEMAND NETWORK SYSTEMS AND SERVICES CONFERENCE, WONS

Abstract
Over the years, mobile networks were deployed using monolithic hardware based on proprietary solutions. Recently, the concept of open Radio Access Networks (RANs), including the standards and specifications from O-RAN Alliance, has emerged. It aims at enabling open, interoperable networks based on independent virtualized components connected through open interfaces. This paves the way to collect metrics and to control the RAN components by means of software applications such as the O-RAN-specified xApps. We propose a private standalone network leveraged by a mobile RAN employing the O-RAN architecture. The mobile RAN consists of a radio node (gNB) carried by a Mobile Robotic Platform autonomously positioned to provide on-demand wireless connectivity. The proposed solution employs a novel Mobility Management xApp to collect and process metrics from the RAN, while using an original algorithm to define the placement of the mobile RAN. This allows for the improvement of the connectivity offered to the User Equipments.

Supervised
thesis

2023

Topology Control of Flying Backhaul Mesh Networks

Author
Eduardo Nuno Moreira Soares de Almeida

Institution
UP-FEUP

2023

5G SA Private Networks Design

Author
Daniel Girão Pereira

Institution
UP-FEUP

2023

A MAC Layer for Underwater Radio Communications

Author
Filipe Borges Teixeira

Institution
UP-FEUP

2023

Vision-aided Obstacle-aware Airborne Communications

Author
Kamran Shafafi

Institution
UP-FEUP

2023

Autonomous Control and Positioning of a Mobile 5G Radio Access Node Employing the O-RAN Architecture

Author
Gonçalo Moura Tomé Fraguito Queirós

Institution
UP-FEUP