Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Interest
Topics
Details

Details

003
Publications

2020

Forest Robot and Datasets for Biomass Collection

Authors
Reis, R; dos Santos, FN; Santos, L;

Publication
Advances in Intelligent Systems and Computing - Robot 2019: Fourth Iberian Robotics Conference

Abstract

2020

Path Planning Aware of Robot’s Center of Mass for Steep Slope Vineyards

Authors
Santos, L; Santos, F; Mendes, J; Costa, P; Lima, J; Reis, R; Shinde, P;

Publication
Robotica

Abstract
SummarySteep slope vineyards are a complex scenario for the development of ground robots. Planning a safe robot trajectory is one of the biggest challenges in this scenario, characterized by irregular surfaces and strong slopes (more than 35°). Moving the robot through a pile of stones, spots with high slope or/and with wrong robot yaw may result in an abrupt fall of the robot, damaging the equipment and centenary vines, and sometimes imposing injuries to humans. This paper presents a novel approach for path planning aware of center of mass of the robot for application in sloppy terrains. Agricultural robotic path planning (AgRobPP) is a framework that considers the A* algorithm by expanding inner functions to deal with three main inputs: multi-layer occupation grid map, altitude map and robot’s center of mass. This multi-layer grid map is updated by obstacles taking into account the terrain slope and maximum robot posture. AgRobPP is also extended with algorithms for local trajectory replanning during the execution of a trajectory that is blocked by the presence of an obstacle, always assuring the safety of the re-planned path. AgRobPP has a novel PointCloud translator algorithm called PointCloud to grid map and digital elevation model (PC2GD), which extracts the occupation grid map and digital elevation model from a PointCloud. This can be used in AgRobPP core algorithms and farm management intelligent systems as well. AgRobPP algorithms demonstrate a great performance with the real data acquired from AgRob V16, a robotic platform developed for autonomous navigation in steep slope vineyards.

2020

Visual Trunk Detection Using Transfer Learning and a Deep Learning-based Coprocessor

Authors
Aguiar, AS; Dos Santos, FN; Miranda De Sousa, AJM; Oliveira, PM; Santos, LC;

Publication
IEEE Access

Abstract

2019

Parallelization of a Vine Trunk Detection Algorithm for a Real Time Robot Localization System

Authors
Azevedo, F; Shinde, P; Santos, L; Mendes, J; Santos, FN; Mendonca, H;

Publication
19th IEEE International Conference on Autonomous Robot Systems and Competitions, ICARSC 2019

Abstract
Developing ground robots for crop monitoring and harvesting in steep slope vineyards is a complex challenge due to two main reasons: harsh condition of the terrain and unstable localization accuracy obtained with Global Navigation Satellite System (GNSS). In this context, a reliable localization system requires an accurate detector for high density of natural/artificial features. In previous works, we presented a novel visual detector for Vineyards Trunks and Masts (ViTruDe) with high levels of detection accuracy. However, its implementation on the most common processing units - central processing units (CPU), using a standard programming language (C/C++), is unable to reach the processing efficiency requirements for real time operation. In this work, we explored parallelization capabilities of processing units, such as graphics processing units (GPU), in order to accelerate the processing time of ViTruDe. This work gives a general perspective on how to parallelize a generic problem in a GPU based solution, while exploring its efficiency when applied to the problem at hands. The ViTruDe detector for GPU was developed considering the constraints of a cost-effective robot to carry-out crop monitoring tasks in steep slope vineyard environments. We compared the proposed ViTruDe implementation on GPU using Compute Unified Compute Unified Device Architecture(CUDA) and CPU, and the achieved solution is over eighty times faster than its CPU counterpart. The training and test data are made public for future research work. This approach is a contribution for an accurate and reliable localization system that is GNSS-free. © 2019 IEEE.

2019

Path Planning approach with the extraction of Topological Maps from Occupancy Grid Maps in steep slope vineyards

Authors
Santos, L; Santos, FN; Magalhaes, S; Costa, P; Reis, R;

Publication
19th IEEE International Conference on Autonomous Robot Systems and Competitions, ICARSC 2019

Abstract
Robotic platforms are being developed for precision agriculture, to execute repetitive and long term tasks. Autonomous monitoring, pruning, spraying and harvesting are some of these agricultural tasks, which requires an advanced path planning system aware of maximum robot capabilities (mobile platform and arms), terrain slopes and plant/fruits position. The state of the art path planning systems have two limitations: are not optimized for large regions and the path planning is not aware of agricultural tasks requirements. This work presents two solutions to overcome these limitations. It considers the VGR2TO (Vineyard Grid Map to Topological) approach to extract from a 2D grid map a topological map, to reduce the total amount of memory needed by the path planning algorithm and to reduce path search space. Besides, introduces an extension to the chosen algorithm, the Astar algorithm, to ensure a safe path and a maximum distance from the vine trees to enable robotic operations on the tree and its fruits. © 2019 IEEE.