Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Interest
Topics
Details

Details

003
Publications

2020

Forest Robot and Datasets for Biomass Collection

Authors
Reis, R; dos Santos, FN; Santos, L;

Publication
Advances in Intelligent Systems and Computing - Robot 2019: Fourth Iberian Robotics Conference

Abstract

2020

Path Planning Aware of Robot’s Center of Mass for Steep Slope Vineyards

Authors
Santos, L; Santos, F; Mendes, J; Costa, P; Lima, J; Reis, R; Shinde, P;

Publication
Robotica

Abstract
SummarySteep slope vineyards are a complex scenario for the development of ground robots. Planning a safe robot trajectory is one of the biggest challenges in this scenario, characterized by irregular surfaces and strong slopes (more than 35°). Moving the robot through a pile of stones, spots with high slope or/and with wrong robot yaw may result in an abrupt fall of the robot, damaging the equipment and centenary vines, and sometimes imposing injuries to humans. This paper presents a novel approach for path planning aware of center of mass of the robot for application in sloppy terrains. Agricultural robotic path planning (AgRobPP) is a framework that considers the A* algorithm by expanding inner functions to deal with three main inputs: multi-layer occupation grid map, altitude map and robot’s center of mass. This multi-layer grid map is updated by obstacles taking into account the terrain slope and maximum robot posture. AgRobPP is also extended with algorithms for local trajectory replanning during the execution of a trajectory that is blocked by the presence of an obstacle, always assuring the safety of the re-planned path. AgRobPP has a novel PointCloud translator algorithm called PointCloud to grid map and digital elevation model (PC2GD), which extracts the occupation grid map and digital elevation model from a PointCloud. This can be used in AgRobPP core algorithms and farm management intelligent systems as well. AgRobPP algorithms demonstrate a great performance with the real data acquired from AgRob V16, a robotic platform developed for autonomous navigation in steep slope vineyards.

2020

Visual Trunk Detection Using Transfer Learning and a Deep Learning-based Coprocessor

Authors
Aguiar, AS; Dos Santos, FN; Miranda De Sousa, AJM; Oliveira, PM; Santos, LC;

Publication
IEEE Access

Abstract

2020

Vineyard trunk detection using deep learning – An experimental device benchmark

Authors
Pinto de Aguiar, ASP; Neves dos Santos, FBN; Feliz dos Santos, LCF; de Jesus Filipe, VMD; Miranda de Sousa, AJM;

Publication
Computers and Electronics in Agriculture

Abstract

2020

Occupancy Grid and Topological Maps Extraction from Satellite Images for Path Planning in Agricultural Robots

Authors
Santos, LC; Aguiar, AS; Santos, FN; Valente, A; Petry, M;

Publication
Robotics

Abstract
Robotics will significantly impact large sectors of the economy with relatively low productivity, such as Agri-Food production. Deploying agricultural robots on the farm is still a challenging task. When it comes to localising the robot, there is a need for a preliminary map, which is obtained from a first robot visit to the farm. Mapping is a semi-autonomous task that requires a human operator to drive the robot throughout the environment using a control pad. Visual and geometric features are used by Simultaneous Localisation and Mapping (SLAM) Algorithms to model and recognise places, and track the robot’s motion. In agricultural fields, this represents a time-consuming operation. This work proposes a novel solution—called AgRoBPP-bridge—to autonomously extract Occupancy Grid and Topological maps from satellites images. These preliminary maps are used by the robot in its first visit, reducing the need of human intervention and making the path planning algorithms more efficient. AgRoBPP-bridge consists of two stages: vineyards row detection and topological map extraction. For vineyards row detection, we explored two approaches, one that is based on conventional machine learning technique, by considering Support Vector Machine with Local Binary Pattern-based features, and another one found in deep learning techniques (ResNET and DenseNET). From the vineyards row detection, we extracted an occupation grid map and, by considering advanced image processing techniques and Voronoi diagrams concept, we obtained a topological map. Our results demonstrated an overall accuracy higher than 85% for detecting vineyards and free paths for robot navigation. The Support Vector Machine (SVM)-based approach demonstrated the best performance in terms of precision and computational resources consumption. AgRoBPP-bridge shows to be a relevant contribution to simplify the deployment of robots in agriculture.