Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
About

About

José Lima received the M.Sc. and PhD in Electrical and Computer Engineering on Faculty of Engineering of University of Porto, Portugal in 2001 and 2009. He joined the Polytechnic Institute of Bragança in 2002, and currently he is a Coordinator Professor and head of the Electrical Engineering Department of that school. He is also a vice coordinator of the Research Centre in Digitalization and Intelligent Robotics, and Member of the coordination council of the Centre for Robotics in Industry and Intelligent Systems group of the INESC TEC (Institute for Systems and Computer Engineering of Porto, Portugal). He has published more than 150 papers in international scientific journals and conference proceedings. In addition, he participated and juried some autonomous mobile robotics competitions and developed industrial applications. Moreover, his research interests are in the field of mobile robotics, simulation and IoT. He participated as researcher or PI in some national, FP7 and H2020 funded projects. He supervised more than 60 Master degree students and is actually supervising 8 PhD.

Interest
Topics
Details

Details

  • Name

    José Lima
  • Role

    External Research Collaborator
  • Since

    01st June 2009
010
Publications

2023

Modelling of a Vibration Robot Using Localization Ground Truth Assisted by ArUCo Markers

Authors
Matos, D; Lima, J; Rohrich, R; Oliveira, A; Valente, A; Costa, P; Costa, P;

Publication
ROBOTICS IN NATURAL SETTINGS, CLAWAR 2022

Abstract
Simulators have been increasingly used on development and tests on several areas. They allow to speed up the development without damage and no extra costs. On realistic simulators, where kinematics play an important role, the modelling process should be imported for each component to be accurately simulated. Some robots are not yet modelled, as for example the Monera. This paper presents a model of a small vibration robot (Monera) that is acquired in a developed test-bed. A localisation ground truth is used to acquire the position of the Monera with actuating it. Linear and angular speeds acquired from real experiments allow to validate the proposed methodology.

2023

Hybrid Legged-Wheeled Robotic Platforms: Survey on Existing Solutions

Authors
Moreira, J; Soares, IN; Lima, J; Pinto, VH; Costa, P;

Publication
ROBOTICS IN NATURAL SETTINGS, CLAWAR 2022

Abstract
This survey analyses and compares ten different robots capable of hybrid locomotion in an attempt to elucidate the readers on several aspects of importance when designing and implementing a legged-wheeled vehicle. With this purpose in mind, the robots are compared based on their goals, kinematic configurations, joint specifications and overall performance. In this text, their variety and versatility is presented, justifying their use in real-world scenarios.

2023

Multi-robot Coordination for a Heterogeneous Fleet of Robots

Authors
Pereira, D; Matos, D; Rebelo, P; Ribeiro, F; Costa, P; Lima, J;

Publication
ROBOT2022: FIFTH IBERIAN ROBOTICS CONFERENCE: ADVANCES IN ROBOTICS, VOL 2

Abstract
There is an increasing need for autonomous mobile robots (AMRs) in industrial environments. The capability of autonomous movement and transportation of items in industrial environments provides a significant increase in productivity and efficiency. This need, coupled with the possibility of controlling groups of heterogeneous robots, simultaneously addresses a wide range of tasks with different characteristics in the same environment, further increasing productivity and efficiency. This paper will present an implementation of a system capable of coordinating a fleet of heterogeneous robots with robustness. The implemented system must be able to plan a safe and efficient path for these different robots. To achieve this task, the TEA* (Time Enhanced A*) graph search algorithm will be used to coordinate the paths of the robots, along with a graph decomposition module that will be used to improve the efficiency and safety of this system. The project was implemented using the ROS framework and the Stage simulator. Results validate the proposed approach since the system was able to coordinate a fleet of robots in various different tests efficiently and safely, given the heterogeneity of the robots.

2023

Position Estimator for a Follow Line Robot: Comparison of Least Squares and Machine Learning Approaches

Authors
Matos, D; Mendes, J; Lima, J; Pereira, AI; Valente, A; Soares, S; Costa, P; Costa, P;

Publication
ROBOTICS IN NATURAL SETTINGS, CLAWAR 2022

Abstract
Navigation is one of the most important tasks for a mobile robot and the localisation is one of its main requirements. There are several types of localisation solutions such as LiDAR, Radio-frequency and acoustic among others. The well-known line follower has been a solution used for a long time ago and still remains its application, especially in competitions for young researchers that should be captivated to the scientific and technological areas. This paper describes two methodologies to estimate the position of a robot placed on a gradient line and compares them. The Least Squares and the Machine Learning methods are used and the results applied to a real robot allow to validate the proposed approach.

2023

Robot at Factory 4.0: An Auto-Referee Proposal Based on Artificial Vision

Authors
Ferreira, T; Braun, J; Lima, J; Pinto, VH; Santos, M; Costa, P;

Publication
ROBOT2022: FIFTH IBERIAN ROBOTICS CONFERENCE: ADVANCES IN ROBOTICS, VOL 1

Abstract
The robotization and automation of tasks are relevant processes and of great relevance to be considered nowadays. This work aims to turn the manual action of assigning the score for the robotic competition Robot at Factory 4.0 by an automatic referee. Specifically, the aim is to represent the real space in a set of computational information using computer vision, localization and mapping techniques. One of the crucial processes to achieve this goal involved the adaptive calibration of the parameters of a digital camera through visual references and tracking of objects, which resulted in a fully functional, robust and dynamic system that is capable of mapping the competition's objects accurately and correctly performing the referee's tasks.

Supervised
thesis

2021

Application of Lean methodologies in Information Security processes improvement

Author
Francisco Ribeiro Pereira da Silva

Institution
UP-FEUP

2021

Sistema Inteligente de Deteção de Pessoas para Robôs Móveis Autónomos de Desinfeção

Author
Hugo Lima Mendonça

Institution
UP-FEUP

2021

Simulation and Planning of a 3D Spray Painting Robotic System

Author
João Marcelo Casanova Almeida Tomé Santos

Institution
UP-FEUP

2021

Articulação Modular para Braços Robóticos

Author
Marco António Mendonça Rocha

Institution
UP-FEUP

2016

Task Scheduling for Multiples Robots in an Industrial Environment

Author
Vítor Emanuel dos Santos Lousas Alves da Mota

Institution
UP-FEUP