Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
About

About

João Gama is a Full Professor at the Faculty of Economy, University of Porto. He is a researcher and vice-director of LIAAD, a group belonging to INESC TEC. He got the PhD degree from the University of Porto, in 2000. He is a Senior member of IEEE.

He has worked on several National and European projects on Incremental and Adaptive learning systems, Ubiquitous Knowledge Discovery, Learning from Massive, and Structured Data, etc. He served as Co-Program chair of ECML'2005, DS'2009, ADMA'2009, IDA' 2011, and ECML/PKDD'2015. He served as track chair on Data Streams with ACM SAC from 2007 till 2016. He organized a series of Workshops on Knowledge Discovery from Data Streams with ECML/PKDD, and Knowledge Discovery from Sensor Data with ACM SIGKDD. He is the author of several books on Data Mining (in Portuguese) and authored a monograph on Knowledge Discovery from Data Streams. He authored more than 250 peer-reviewed papers in areas related to machine learning, data mining, and data streams. He is a member of the editorial board of international journals ML, DMKD, TKDE, IDA, NGC, and KAIS. He (co-)supervised more than 12 PhD students and 50 MSc students.

Interest
Topics
Details

Details

  • Name

    João Gama
  • Role

    Research Coordinator
  • Since

    01st April 2009
017
Publications

2024

Classification of Pulmonary Nodules in 2-[<SUP>18</SUP>F]FDG PET/CT Images with a 3D Convolutional Neural Network

Authors
Alves, VM; Cardoso, JD; Gama, J;

Publication
NUCLEAR MEDICINE AND MOLECULAR IMAGING

Abstract
Purpose 2-[F-18]FDG PET/CT plays an important role in the management of pulmonary nodules. Convolutional neural networks (CNNs) automatically learn features from images and have the potential to improve the discrimination between malignant and benign pulmonary nodules. The purpose of this study was to develop and validate a CNN model for classification of pulmonary nodules from 2-[F-18]FDG PET images.Methods One hundred thirteen participants were retrospectively selected. One nodule per participant. The 2-[F-18]FDG PET images were preprocessed and annotated with the reference standard. The deep learning experiment entailed random data splitting in five sets. A test set was held out for evaluation of the final model. Four-fold cross-validation was performed from the remaining sets for training and evaluating a set of candidate models and for selecting the final model. Models of three types of 3D CNNs architectures were trained from random weight initialization (Stacked 3D CNN, VGG-like and Inception-v2-like models) both in original and augmented datasets. Transfer learning, from ImageNet with ResNet-50, was also used.Results The final model (Stacked 3D CNN model) obtained an area under the ROC curve of 0.8385 (95% CI: 0.6455-1.0000) in the test set. The model had a sensibility of 80.00%, a specificity of 69.23% and an accuracy of 73.91%, in the test set, for an optimised decision threshold that assigns a higher cost to false negatives.Conclusion A 3D CNN model was effective at distinguishing benign from malignant pulmonary nodules in 2-[F-18]FDG PET images.

2024

SWINN: Efficient nearest neighbor search in sliding windows using graphs

Authors
Mastelini, SM; Veloso, B; Halford, M; de Carvalho, ACPDF; Gama, J;

Publication
INFORMATION FUSION

Abstract
Nearest neighbor search (NNS) is one of the main concerns in data stream applications since similarity queries can be used in multiple scenarios. Online NNS is usually performed on a sliding window by lazily scanning every element currently stored in the window. This paper proposes Sliding Window-based Incremental Nearest Neighbors (SWINN), a graph-based online search index algorithm for speeding up NNS in potentially never-ending and dynamic data stream tasks. Our proposal broadens the application of online NNS-based solutions, as even moderately large data buffers become impractical to handle when a naive NNS strategy is selected. SWINN enables efficient handling of large data buffers by using an incremental strategy to build and update a search graph supporting any distance metric. Vertices can be added and removed from the search graph. To keep the graph reliable for search queries, lightweight graph maintenance routines are run. According to experimental results, SWINN is significantly faster than performing a naive complete scan of the data buffer while keeping competitive search recall values. We also apply SWINN to online classification and regression tasks and show that our proposal is effective against popular online machine learning algorithms.

2023

Online Anomaly Explanation: A Case Study on Predictive Maintenance

Authors
Ribeiro, RP; Mastelini, SM; Davari, N; Aminian, E; Veloso, B; Gama, J;

Publication
MACHINE LEARNING AND PRINCIPLES AND PRACTICE OF KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2022, PT II

Abstract
Predictive Maintenance applications are increasingly complex, with interactions between many components. Black-box models are popular approaches due to their predictive accuracy and are based on deep-learning techniques. This paper presents an architecture that uses an online rule learning algorithm to explain when the black-box model predicts rare events. The system can present global explanations that model the black-box model and local explanations that describe why the black-box model predicts a failure. We evaluate the proposed system using four real-world public transport data sets, presenting illustrative examples of explanations.

2023

An Online Data-Driven Predictive Maintenance Approach for Railway Switches

Authors
Tome, ES; Ribeiro, RP; Veloso, B; Gama, J;

Publication
MACHINE LEARNING AND PRINCIPLES AND PRACTICE OF KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2022, PT II

Abstract
An online data-driven predictive maintenance approach for railway switches using data logs obtained from the interlocking system of the railway infrastructure is proposed in this paper. The proposed approach is detailed described and consists of a two-phase process: anomaly detection and remaining useful life prediction. The approach is applied to and validated in a real case study, the Metro do Porto, from which seven months of data is available. The approach has been revealed to be satisfactory in detecting anomalies. The results open the possibilities for further studies and validation with a more extensive dataset on the remaining useful life prediction.

2023

Ethical and Technological AI Risks Classification: A Human Vs Machine Approach

Authors
Teixeira, S; Veloso, B; Rodrigues, JC; Gama, J;

Publication
MACHINE LEARNING AND PRINCIPLES AND PRACTICE OF KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2022, PT I

Abstract
The growing use of data-driven decision systems based on Artificial Intelligence (AI) by governments, companies and social organizations has given more attention to the challenges they pose to society. Over the last few years, news about discrimination appeared on social media, and privacy, among others, highlighted their vulnerabilities. Despite all the research around these issues, the definition of concepts inherent to the risks and/or vulnerabilities of data-driven decision systems is not consensual. Categorizing the dangers and vulnerabilities of data-driven decision systems will facilitate ethics by design, ethics in design and ethics for designers to contribute to responsibleAI. Themain goal of thiswork is to understand which types of AI risks/ vulnerabilities are Ethical and/or Technological and the differences between human vs machine classification. We analyze two types of problems: (i) the risks/ vulnerabilities classification task by humans; and (ii) the risks/vulnerabilities classification task by machines. To carry out the analysis, we applied a survey to perform human classification and the BERT algorithm in machine classification. The results show that even with different levels of detail, the classification of vulnerabilities is in agreement in most cases.

Supervised
thesis

2023

An Exploratory Study on the Adoption of Additive Manufacturing Technologies by Space Organisations

Author
Rita Alexandra de Lourenço Roriz Mendes

Institution
UP-FEUP

2022

Forecasting for Solar Power Farms

Author
Tiago Mourão Pires

Institution
UP-FEP

2022

Aiding Researchers Making their Computational Experiments Reproducible

Author
Lázaro Gabriel Barros da Costa

Institution
UP-FEUP

2022

Federated Anomaly Detection over Distributed Data Streams

Author
Paula Raissa Costa e Silva

Institution
UP-FEUP

2022

Reactive Power Management considering Transmission System Operator abd Distribution System Operator Coordination

Author
Marta Alexandra Lourenço Brandão Rodrigues

Institution
ULisboa-IST