Cookies
O website necessita de alguns cookies e outros recursos semelhantes para funcionar. Caso o permita, o INESC TEC irá utilizar cookies para recolher dados sobre as suas visitas, contribuindo, assim, para estatísticas agregadas que permitem melhorar o nosso serviço. Ver mais
Aceitar Rejeitar
  • Menu
Sobre

Sobre

João Gama é Professor Associado da Faculdade de Economia da Universidade do Porto. É investigador e vice-diretor do LIAAD, INESC TEC. Concluiu o doutoramento na Universidade do Porto, em 2000. É Sénior member do IEEE. Trabalhou em vários projetos nacionais e europeus sobre sistemas de aprendizagem incremental e adaptativo, descoberta de conhecimento em tempo real, e aprendizagem de dados massivos e estruturados. Foi PC chair no ECML2005, DS2009, ADMA2009, IDA '2011 e ECML / PKDD'2015. Foi track chair ACM SAC de 2007 a 2018. Organizou uma série de Workshops sobre Descoberta de Conhecimento de fluxos de dados no ECMLPKDD, ICML, e no ACM SIGKDD. É autor de vários livros em Data Mining e autoria de uma monografia sobre Descoberta de Conhecimento a partir de fluxos de Dados. É autor de mais de 250 papéis peer-reviewed em áreas relacionadas com a aprendizagem automática, aprendizagem de dados em tempo real e fluxos de dados. É membro do conselho editorial de revistas internacionais ML, DMKD, TKDE, IDA, NGC e KAIS. Supervisionou mais de 15 estudantes de doutoramento e 50 alunos de mestrado.

Tópicos
de interesse
Detalhes

Detalhes

  • Nome

    João Gama
  • Cluster

    Informática
  • Cargo

    Investigador Coordenador
  • Desde

    01 abril 2009
018
Publicações

2022

Host-based IDS: A review and open issues of an anomaly detection system in IoT

Autores
Martins, I; Resende, JS; Sousa, PR; Silva, S; Antunes, L; Gama, J;

Publicação
FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE

Abstract

2022

A Fault Detection Framework Based on LSTM Autoencoder: A Case Study for Volvo Bus Data Set

Autores
Davari, N; Pashami, S; Veloso, B; Nowaczyk, S; Fan, Y; Pereira, PM; Ribeiro, RP; Gama, J;

Publicação
Advances in Intelligent Data Analysis XX - 20th International Symposium on Intelligent Data Analysis, IDA 2022, Rennes, France, April 20-22, 2022, Proceedings

Abstract

2022

Bank Statements to Network Features: Extracting Features Out of Time Series Using Visibility Graph

Autores
Shaji, N; Gama, J; Ribeiro, RP; Gomes, P;

Publicação
Advances in Intelligent Data Analysis XX - 20th International Symposium on Intelligent Data Analysis, IDA 2022, Rennes, France, April 20-22, 2022, Proceedings

Abstract
Non-traditional data like the applicant’s bank statement is a significant source for decision-making when granting loans. We find that we can use methods from network science on the applicant’s bank statements to convert inherent cash flow characteristics to predictors for default prediction in a credit scoring or credit risk assessment model. First, the credit cash flow is extracted from a bank statement and later converted into a visibility graph or network. Afterwards, we use this visibility network to find features that predict the borrowers’ repayment behaviour. We see that feature selection methods select all the five extracted features. Finally, SMOTE is used to balance the training data. The model using the features from the network and the standard features together is shown having superior performance compared to the model that uses only the standard features, indicating the network features’ predictive power. © 2022, The Author(s), under exclusive license to Springer Nature Switzerland AG.

2022

Advances in Knowledge Discovery and Data Mining - 26th Pacific-Asia Conference, PAKDD 2022, Chengdu, China, May 16-19, 2022, Proceedings, Part I

Autores
Gama, J; Li, T; Yu, Y; Chen, E; Zheng, Y; Teng, F;

Publicação
PAKDD (1)

Abstract

2022

Advances in Knowledge Discovery and Data Mining - 26th Pacific-Asia Conference, PAKDD 2022, Chengdu, China, May 16-19, 2022, Proceedings, Part II

Autores
Gama, J; Li, T; Yu, Y; Chen, E; Zheng, Y; Teng, F;

Publicação
PAKDD (2)

Abstract

Teses
supervisionadas

2021

Segmentação fonética adaptativa em voz disfónica

Autor
João Filipe Torres Costa

Instituição
UP-FEUP

2021

Hierarchical Time Series Predictions in a Portuguese Telecommunications' Company

Autor
Mariana de Quina Rodrigues

Instituição
UP-FEP

2021

High Definition Wireless Video Streaming  using Underwater Data Mules

Autor
João Pedro Teixeira Loureiro

Instituição
UP-FEUP

2021

Estudo da Viabilidade da Participação de Agregadores de Consumo no Mercado de Energia de Reserva de Regulação

Autor
João Pedro Dias Ferreira

Instituição
UP-FEUP

2021

Optimizing inventory management with prepacks

Autor
Ana Catarina Costa Azevedo

Instituição
UP-FEP