Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
About

About

PhD by the Faculty of Engineering of the University of Porto in February 2004, after presentation and discussion of the thesis "Dynamic Test of Analog / Digital Converters - New Methods of Calculation of Functional Characterization Parameters".

Assistant Professor of the Department of Electrotechnical and Computer Engineering of the Faculty of Engineering of the University of Porto (DEEC-FEUP) where he teaches curricular units in the areas of Electronics and Microprocessors.

He is an INESC TEC researcher and coordinator at CRIIS (Center of Industrial Robotics and Intelligent Systems) where he participates in several scientific projects.

His skills and interests include Industrial Robotics, Automation and Control Systems, Industrial Networks, Embedded Systems, Industry 4.0 and Internet of Things.

Interest
Topics
Details

Details

  • Name

    Hélio Mendonça
  • Role

    Senior Researcher
  • Since

    01st January 1995
014
Publications

2025

A Review of Robotic Interfaces for Post-Stroke Upper-Limb Rehabilitation: Assistance Types, Actuation Methods, and Control Mechanisms

Authors
Gonçalves, A; Silva, MF; Mendonça, H; Rocha, CD;

Publication
ROBOTICS

Abstract
Stroke is a leading cause of long-term disability worldwide, with survivors often facing significant challenges in regaining upper-limb functionality. In response, robotic rehabilitation systems have emerged as promising tools to enhance post-stroke recovery by delivering precise, adaptable, and patient-specific therapy. This paper presents a review of robotic interfaces developed specifically for upper-limb rehabilitation. It analyses existing exoskeleton- and end-effector-based systems, with respect to three core design pillars: assistance types, control philosophies, and actuation methods. The review highlights that most solutions favor electrically actuated exoskeletons, which use impedance- or electromyography-driven control, with active assistance being the predominant rehabilitation mode. Resistance-providing systems remain underutilized. Furthermore, no hybrid approaches featuring the combination of robotic manipulators with actuated interfaces were found. This paper also identifies a recent trend towards lightweight, modular, and portable solutions and discusses the challenges in bridging research prototypes with clinical adoption. By focusing exclusively on upper-limb applications, this work provides a targeted reference for researchers and engineers developing next-generation rehabilitation technologies.

2025

Integrated RFID System for Intralogistics Operations with Industrial Mobile Robots

Authors
Pacheco, FD; Rebelo, PM; Sousa, RB; Silva, MF; Mendonça, HS;

Publication
2025 IEEE INTERNATIONAL CONFERENCE ON AUTONOMOUS ROBOT SYSTEMS AND COMPETITIONS, ICARSC

Abstract
Radio-Frequency IDentification (RFID) technologies automate the identification of objects and persons, having several applications in retail, manufacturing, and intralogistics sectors. Several works explore the application of RFID systems in robotics and intralogistics, focusing on locating robots, tags, and inventory management. This paper addresses the challenge of intralogistics cargo trolleys communicating their characteristics to an autonomous mobile robot through an RFID system. The robot must know the trolley's relative pose to avoid collisions with the surroundings. As a result, the passive tag on the cargo communicates information to the robot, including the base footprint of the trolley. The proposed RFID system includes the development of a controller board to interact with the frontend integrated circuit of an external antenna onboard the industrial mobile robot. Experimental results assess the system's readability distance in two distinct environments and with two different antenna modules. All the code and documentation are available in a public repository.

2024

Integrating Internationalization and Online Collaborative Strategies in Digital Electronics Education: Exploring IaH, COIL, PBL, and RRL Approaches for Enhanced Learning

Authors
Cristian Zambelli; Michele Favalli; Piero Olivo; Ignacio Bravo; Alfredo Gardel; José Carlos Alves; Hélio Mendonça; Etienne Lemaire; Remi Busseuil; carlos cruz;

Publication

Abstract

This document is intended to present a benchmark of multiple good practices in the context of internationalization studies, particularly focused on digital electronics and programmable devices, yet is not limited to them. This paper will start with a comprehensive paper desk analysis together with an in-depth research process that should lead to the selection of innovative tools applied to digital systems. International initiatives are oriented towards increasing the quality of higher education by motivating teachers of STEM disciplines to use a multidisciplinary approach and teach with the massive support of technologies like Classroom, MS-Teams, Blackboard, etc. The central goal is to suggest and recommend a model for integrating intermediate and advanced digital electronics subjects (e.g., FPGA, microcontrollers, etc.) and ICT in international teaching approaches such as Collaborative Online International Learning (COIL), Project-based Learning (PBL) and Real Remote Labs (RRL). This is the approach sought by the European Project DECEL.

2024

A MQTT-based infrastructure to support Cooperative Online Learning Activities

Authors
Mendonça, HS; Zambelli, C; Alves, JC;

Publication
2024 39TH CONFERENCE ON DESIGN OF CIRCUITS AND INTEGRATED SYSTEMS, DCIS

Abstract
Teaching the processes of designing digital electronic systems is becoming an increasingly challenging task. Design methodologies and tools have evolved to cope with the ever-growing complexity and density, raising the abstraction level of the source design far away from the logic circuit. However, it is of paramount importance that fresh students start by understanding the fundamental concepts of Boolean algebra, design, and optimization of combinational and sequential gatelevel circuits, before moving to higher abstract concepts and tools. For this, hands-on practice with simple real digital circuits is essential to understanding the essentials of the operation of digital circuits and how digital data is propagated and transformed from block to block. In this paper we present a distributed infrastructure based on the network protocol MQTT to support the deployment of distributed digital systems built with parts located in different physical locations. Thus, promoting the implementation of collaborative online learning/teaching activities will be one of our main goals. Experimental results show latencies between remote sites in the range of a few tens of milliseconds, which is acceptable for running simple digital systems at low speeds, which is necessary for being perceived and understanded by people.

2024

Collaborative learning using open-source FPGA-based under water ultrasonic system

Authors
Lemaire, E; Busseuil, R; Chemla, J; Certon, D; Zambelli, C; Cruz de la Torre, C; Gardel Vicente, A; Bravo, I; Mendonça, H; Alves, JC;

Publication

Abstract
The Digital electronics collaborative enhanced learning (DECEL) project has recently developed an international collaborative education course. Its main objective is to enhance the digital electronics skills of international students by working on a complex, multidisciplinary applied problem using a mixed digital architecture. We have developed a logic level synthesis and dedicated software layers on the Red Pitaya FPGA platform. The diversity of digital concepts to be implemented, from hardware description language (HDL) to high-level languages such as Python or Matlab, forced the students to work together and rapidly improve their skills. Their motivation was fueled by the curiosity of controlling an ultrasound probe to obtain ultrasound signatures. This particular physics, little known to the students, was an additional source of curiosity. The goal of forming an image in a liquid medium was an additional motivating factor for them. The students reported that they learned a lot from the experiment. Thus, the technical parts and pedagogical results are documented in this work for reproducibility.