Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
About
Download Photo HD

About

Germano Veiga is a Mechanical Engineer with a PhD in Mechanical Engineering (Robotics and Automation) (2010) by the University of Coimbra.
In 2005 he was an invited researcher at the University of Lund, Sweden, and was a researcher (2002-2011) and Invited Professor (2007-2011) at the University of Coimbra.
He is now Senior Researcher at INESC TEC, in Porto, and from 2016 is Auxiliar Professor at the Faculty of Engineering of the University of Porto.
His research interests are mostly focused on future industrial robotics including, plug-and-produce technologies,
robot programming, mobile manipulators and Human Robot Interfacing. During his PhD studies Germano was part of the FP6 SMErobot team (2005-2009) and later became member of the Exec. Committee of the FP7 ECHORD project (2009-2012)
More recently Germano became the coordinator of the INESC-TEC team participating in the projects FP7-CARLoS, FP7-STAMINA, FP7-SMErobotics, H2020-ColRobot.
Since January 2017 he is the Coordinator of the H2020 ScalABLE4.0 project.

Interest
Topics
Details

Details

019
Publications

2020

Detecting and Solving Tube Entanglement in Bin Picking Operations

Authors
Leao, G; Costa, CM; Sousa, A; Veiga, G;

Publication
Applied Sciences

Abstract
Manufacturing and production industries are increasingly turning to robots to carry out repetitive picking operations in an efficient manner. This paper focuses on tackling the novel challenge of automating the bin picking process for entangled objects, for which there is very little research. The chosen case study are sets of freely curved tubes, which are prone to occlusions and entanglement. The proposed algorithm builds a representation of the tubes as an ordered list of cylinders and joints using a point cloud acquired by a 3D scanner. This representation enables the detection of occlusions in the tubes. The solution also performs grasp planning and motion planning, by evaluating post-grasp trajectories via simulation using Gazebo and the ODE physics engine. A force/torque sensor is used to determine how many items were picked by a robot gripper and in which direction it should rotate to solve cases of entanglement. Real-life experiments with sets of PVC tubes and rubber radiator hoses showed that the robot was able to pick a single tube on the first try with success rates of 99% and 93%, respectively. This study indicates that using simulation for motion planning is a promising solution to deal with entangled objects.

2020

Optimal automatic path planner and design for high redundancy robotic systems

Authors
Tavares, P; Marques, D; Malaca, P; Veiga, G; Costa, P; Moreira, AP;

Publication
INDUSTRIAL ROBOT-THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH AND APPLICATION

Abstract
Purpose In the vast majority of the individual robot installations, the robot arm is just one piece of a complex puzzle of components, such as grippers, jigs or external axis, that together compose an industrial robotic cell. The success of such installations is very dependent not only on the selection of such components but also on the layout and design of the final robotic cell, which are the main tasks of the system integrators. Consequently, successful robot installations are often empirical tasks owing to the high number of experimental combinations that could lead to exhaustive and time-consuming testing approaches. Design/methodology/approach A newly developed optimized technique to deal with automatic planning and design of robotic systems is proposed and tested in this paper. Findings The application of a genetic-based algorithm achieved optimal results in short time frames and improved the design of robotic work cells. Here, the authors show that a multi-layer optimization approach, which can be validated using a robotic tool, is able to help with the design of robotic systems. Originality/value To date, robotic solutions lack flexibility to cope with the demanding industrial environments. The results presented here formalize a new flexible and modular approach, which can provide optimal solutions throughout the different stages of design and execution control of any work cell.

2020

ROBIN: An open-source middleware for plug'n'produce of Cyber-Physical Systems

Authors
Arrais, R; Ribeiro, P; Domingos, H; Veiga, G;

Publication
INTERNATIONAL JOURNAL OF ADVANCED ROBOTIC SYSTEMS

Abstract
Motivated by the Fourth Industrial Revolution, there is an ever-increasing need to integrated Cyber-Physical Systems in industrial production environments. To address the demand for flexible robotics in contemporary industrial environments and the necessity to integrate robots and automation equipment in an efficient manner, an effective, bidirectional, reliable and structured data interchange mechanism is required. As an answer to these requirements, this article presents ROBIN, an open-source middleware for achieving interoperability between the Robot Operating System and CODESYS, a softPLC that can run on embedded devices and that supports a variety of fieldbuses and industrial network protocols. The referred middleware was successfully applied and tested in various industrial applications such as battery management systems, motion, robotic manipulator and safety hardware control, and horizontal integration between a mobile manipulator and a conveyor system.

2020

Autonomous Scene Exploration for Robotics: A Conditional Random View-Sampling and Evaluation Using a Voxel-Sorting Mechanism for Efficient Ray Casting

Authors
Santos, J; Oliveira, M; Arrais, R; Veiga, G;

Publication
SENSORS

Abstract
Carrying out the task of the exploration of a scene by an autonomous robot entails a set of complex skills, such as the ability to create and update a representation of the scene, the knowledge of the regions of the scene which are yet unexplored, the ability to estimate the most efficient point of view from the perspective of an explorer agent and, finally, the ability to physically move the system to the selected Next Best View (NBV). This paper proposes an autonomous exploration system that makes use of a dual OcTree representation to encode the regions in the scene which are occupied, free, and unknown. The NBV is estimated through a discrete approach that samples and evaluates a set of view hypotheses that are created by a conditioned random process which ensures that the views have some chance of adding novel information to the scene. The algorithm uses ray-casting defined according to the characteristics of the RGB-D sensor, and a mechanism that sorts the voxels to be tested in a way that considerably speeds up the assessment. The sampled view that is estimated to provide the largest amount of novel information is selected, and the system moves to that location, where a new exploration step begins. The exploration session is terminated when there are no more unknown regions in the scene or when those that exist cannot be observed by the system. The experimental setup consisted of a robotic manipulator with an RGB-D sensor assembled on its end-effector, all managed by a Robot Operating System (ROS) based architecture. The manipulator provides movement, while the sensor collects information about the scene. Experimental results span over three test scenarios designed to evaluate the performance of the proposed system. In particular, the exploration performance of the proposed system is compared against that of human subjects. Results show that the proposed approach is able to carry out the exploration of a scene, even when it starts from scratch, building up knowledge as the exploration progresses. Furthermore, in these experiments, the system was able to complete the exploration of the scene in less time when compared to human subjects.

2019

Testing the vertical and cyber-physical integration of cognitive robots in manufacturing

Authors
Krueger, V; Rovida, F; Grossmann, B; Petrick, R; Crosby, M; Charzoule, A; Garcia, GM; Behnke, S; Toscano, C; Veiga, G;

Publication
Robotics and Computer-Integrated Manufacturing

Abstract

Supervised
thesis

2019

Towards “Industrie 4.0” in the context of investment casting industry

Author
Isabel Maria Lousada Soares Figueiredo

Institution
UP-FEUP

2019

Mobile Robotics Simulation for ROS Based Robots Using Visual Components

Author
Gustavo Emanuel Barbosa Teixeira

Institution
UP-FEUP

2019

Open Scalable Production System: An Industry 4.0 Framework for Cyber-Physical Systems

Author
Rafael Lírio Arrais

Institution
UP-FEUP

2019

Development and Simulation of an Automatic Tool Changer for an ABB Robot

Author
Paulo Jorge Leitão e Sousa

Institution
UP-FEUP

2018

Desenvolvimento de Standard Operating Procedure para os testes em fábrica de armazéns automáticos

Author
Gil Miguel Mota Silva

Institution
UP-FEUP