Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
About

About

André Silva Pinto de Aguiar received the Electrical Engineering MSc in 2019, from the Faculty of Engineering of the University of Porto specialized in robotics, and a PhD in Electrical Engineering in 2023 from the UTAD university. He is a researcher at the Centre for Robotics in Industry and Intelligent Systems of INESC TEC in Porto. His current research interests are focused on robotics navigation, Simultaneous Localization and Mapping, Computer Vision, Point Cloud processing and Deep Learning. André Silva Aguiar is author of more than 20 indexed articles and participated in more than 10 National and European projects in the agricultural robotics field. At the moment André is leading Orioos, a project that was awarded by EUSPA winning the myEUspace competition.

Interest
Topics
Details

Details

010
Publications

2022

Localization and Mapping on Agriculture Based on Point-Feature Extraction and Semiplanes Segmentation From 3D LiDAR Data

Authors
Aguiar, AS; dos Santos, FN; Sobreira, H; Boaventura Cunha, J; Sousa, AJ;

Publication
FRONTIERS IN ROBOTICS AND AI

Abstract
Developing ground robots for agriculture is a demanding task. Robots should be capable of performing tasks like spraying, harvesting, or monitoring. However, the absence of structure in the agricultural scenes challenges the implementation of localization and mapping algorithms. Thus, the research and development of localization techniques are essential to boost agricultural robotics. To address this issue, we propose an algorithm called VineSLAM suitable for localization and mapping in agriculture. This approach uses both point- and semiplane-features extracted from 3D LiDAR data to map the environment and localize the robot using a novel Particle Filter that considers both feature modalities. The numeric stability of the algorithm was tested using simulated data. The proposed methodology proved to be suitable to localize a robot using only three orthogonal semiplanes. Moreover, the entire VineSLAM pipeline was compared against a state-of-the-art approach considering three real-world experiments in a woody-crop vineyard. Results show that our approach can localize the robot with precision even in long and symmetric vineyard corridors outperforming the state-of-the-art algorithm in this context.

2022

FollowMe - A Pedestrian Following Algorithm for Agricultural Logistic Robots

Authors
Sarmento, J; Dos Santos, FN; Aguiar, AS; Sobreira, H; Regueiro, CV; Valente, A;

Publication
2022 IEEE INTERNATIONAL CONFERENCE ON AUTONOMOUS ROBOT SYSTEMS AND COMPETITIONS (ICARSC)

Abstract
In Industry 4.0 and Agriculture 4.0, there are logistics areas where robots can play an important role, for example by following a person at a certain distance. These robots can transport heavy tools or simply help collect certain items, such as harvested fruits. The use of Ultra Wide Band (UWB) transceivers as range sensors is becoming very common in the field of robotics, i.e. for localising goods and machines. Since UWB technology has very accurate time resolution, it is advantageous for techniques such as Time Of Arrival (TOA), which can estimate distance by measuring the time between message frames. In this work, UWB transceivers are used as range sensors to track pedestrians/operators. In this work we propose the use of two algorithms for relative localization, between a person and robot. Both algorithms use a similar 2dimensional occupancy grid, but differ in filtering. The first is based on a Extended Kalman Filter (EKF) that fuses the range sensor with odometry. The second is based on an Histogram Filter that calculates the pedestrian position by discretizing the state space in well-defined regions. Finally, a controller is implemented to autonomously command the robot. Both approaches are tested and compared on a real differential drive robot. Both proposed solutions are able to follow a pedestrian at speeds of 0.1m/s, and are promising solutions to complement other solutions based on cameras and LiDAR.

2022

Path Planning with Hybrid Maps for processing and memory usage optimisation

Authors
Santos, LC; Santos, FN; Aguiar, AS; Valente, A; Costa, P;

Publication
2022 IEEE INTERNATIONAL CONFERENCE ON AUTONOMOUS ROBOT SYSTEMS AND COMPETITIONS (ICARSC)

Abstract
Robotics will play an essential role in agriculture. Deploying agricultural robots on the farm is still a challenging task due to the terrain's irregularity and size. Optimal path planning solutions may fail in larger terrains due to memory requirements as the search space increases. This work presents a novel open-source solution called AgRob Topologic Path Planner, which is capable of performing path planning operations using a hybrid map with topological and metric representations. A local A* algorithm pre-plans and saves local paths in local metric maps, saving them into the topological structure. Then, a graph-based A* performs a global search in the topological map, using the saved local paths to provide the full trajectory. Our results demonstrate that this solution could handle large maps (5 hectares) using just 0.002 % of the search space required by a previous solution.

2022

ATOM: A general calibration framework for multi-modal, multi-sensor systems

Authors
Oliveira, M; Pedrosa, E; de Aguiar, AP; Rato, DFPD; dos Santos, FN; Dias, P; Santos, V;

Publication
EXPERT SYSTEMS WITH APPLICATIONS

Abstract
The fusion of data from different sensors often requires that an accurate geometric transformation between the sensors is known. The procedure by which these transformations are estimated is known as sensor calibration. The vast majority of calibration approaches focus on specific pairwise combinations of sensor modalities, unsuitable to calibrate robotic systems containing multiple sensors of varied modalities. This paper presents a novel calibration methodology which is applicable to multi-sensor, multi-modal robotic systems. The approach formulates the calibration as an extended optimization problem, in which the poses of the calibration patterns are also estimated. It makes use of a topological representation of the coordinate frames in the system, in order to recalculate the poses of the sensors throughout the optimization. Sensor poses are retrieved from the combination of geometric transformations which are atomic, in the sense that they are indivisible. As such, we refer to this approach as ATOM - Atomic Transformations Optimization Method. This makes the approach applicable to different calibration problems, such as sensor to sensor, sensor in motion, or sensor to coordinate frame. Additionally, the proposed approach provides advanced functionalities, integrated into ROS, designed to support the several stages of a complete calibration procedure. Results covering several robotic platforms and a large spectrum of calibration problems show that the methodology is in fact general, and achieves calibrations which are as accurate as the ones provided by state of the art methods designed to operate only for specific combinations of pairwise modalities.

2022

Topological map-based approach for localization and mapping memory optimization

Authors
Aguiar, AS; dos Santos, FN; Santos, LC; Sousa, AJ; Boaventura Cunha, J;

Publication
JOURNAL OF FIELD ROBOTICS

Abstract
Robotics in agriculture faces several challenges, such as the unstructured characteristics of the environments, variability of luminosity conditions for perception systems, and vast field extensions. To implement autonomous navigation systems in these conditions, robots should be able to operate during large periods and travel long trajectories. For this reason, it is essential that simultaneous localization and mapping algorithms can perform in large-scale and long-term operating conditions. One of the main challenges for these methods is maintaining low memory resources while mapping extensive environments. This work tackles this issue, proposing a localization and mapping approach called VineSLAM that uses a topological mapping architecture to manage the memory resources required by the algorithm. This topological map is a graph-based structure where each node is agnostic to the type of data stored, enabling the creation of a multilayer mapping procedure. Also, a localization algorithm is implemented, which interacts with the topological map to perform access and search operations. Results show that our approach is aligned with the state-of-the-art regarding localization precision, being able to compute the robot pose in long and challenging trajectories in agriculture. In addition, we prove that the topological approach innovates the state-of-the-art memory management. The proposed algorithm requires less memory than the other benchmarked algorithms, and can maintain a constant memory allocation during the entire operation. This consists of a significant innovation, since our approach opens the possibility for the deployment of complex 3D SLAM algorithms in real-world applications without scale restrictions.