Cookies Policy
We use cookies to improve our site and your experience. By continuing to browse our site you accept our cookie policy. Find out More
Close
  • Menu
Interest
Topics
Details

Details

Publications

2019

Monocular Visual Odometry Benchmarking and Turn Performance Optimization

Authors
Aguiar, A; Sousa, A; dos Santos, FN; Oliveira, M;

Publication
19th IEEE International Conference on Autonomous Robot Systems and Competitions, ICARSC 2019

Abstract
Developing ground robots for crop monitoring and harvesting in steep slope vineyards is a complex challenge due to two main reasons: harsh condition of the terrain and unstable localization accuracy obtained with Global Navigation Satellite System. In this context, a reliable localization system requires an accurate and redundant information to Global Navigation Satellite System and wheel odometry based system. To pursue this goal we benchmark 3 well known Visual Odometry methods with 2 datasets. Two of these are feature-based Visual Odometry algorithms: Libviso2 and SVO 2.0. The third is an appearance-based Visual Odometry algorithm called DSO. In monocular Visual Odometry, two main problems appear: pure rotations and scale estimation. In this paper, we focus on the first issue. To do so, we propose a Kalman Filter to fuse a single gyroscope with the output pose of monocular Visual Odometry, while estimating gyroscope's bias continuously. In this approach we propose a non-linear noise variation that ensures that bias estimation is not affected by Visual Odometry resultant rotations. We compare and discuss the three unchanged methods and the three methods with the proposed additional Kalman Filter. For tests, two public datasets are used: the Kitti dataset and another built in-house. Results show that our additional Kalman Filter highly improves Visual Odometry performance in rotation movements. © 2019 IEEE.

2019

A Version of Libviso2 for Central Dioptric Omnidirectional Cameras with a Laser-Based Scale Calculation

Authors
Aguiar, A; dos Santos, FN; Santos, L; Sousa, A;

Publication
Advances in Intelligent Systems and Computing - Robot 2019: Fourth Iberian Robotics Conference

Abstract

2019

Monocular Visual Odometry Using Fisheye Lens Cameras

Authors
Aguiar, A; dos Santos, FN; Santos, L; Sousa, A;

Publication
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)

Abstract
Developing ground robots for crop monitoring and harvesting in steep slope vineyards is a complex challenge due to two main reasons: harsh condition of the terrain and unstable localization accuracy obtained with Global Navigation Satellite System. In this context, a reliable localization system requires an accurate and redundant information to Global Navigation Satellite System and wheel odometry based system. To pursue this goal and have a reliable localization system in our robotic platform we aim to extract the better performance as possible from a monocular Visual Odometry method. To do so, we present a benchmark of Libviso2 using both perspective and fisheye lens cameras, studying the behavior of the method using both topologies in terms of motion performance in an outdoor environment. Also we analyze the quality of feature extraction of the method using the two camera systems studying the impact of the field of view and omnidirectional image rectification in VO. We propose a general methodology to incorporate a fisheye lens camera system into a VO method. Finally, we briefly describe the robot setup that was used to generate the results that will be presented. © 2019, Springer Nature Switzerland AG.

2019

FAST-FUSION: An improved accuracy omnidirectional visual odometry system with sensor fusion and GPU optimization for embedded low cost hardware

Authors
Aguiar, A; Santos, F; Sousa, AJ; Santos, L;

Publication
Applied Sciences (Switzerland)

Abstract
The main task while developing a mobile robot is to achieve accurate and robust navigation in a given environment. To achieve such a goal, the ability of the robot to localize itself is crucial. In outdoor, namely agricultural environments, this task becomes a real challenge because odometry is not always usable and global navigation satellite systems (GNSS) signals are blocked or significantly degraded. To answer this challenge, this work presents a solution for outdoor localization based on an omnidirectional visual odometry technique fused with a gyroscope and a low cost planar light detection and ranging (LIDAR), that is optimized to run in a low cost graphical processing unit (GPU). This solution, named FAST-FUSION, proposes to the scientific community three core contributions. The first contribution is an extension to the state-of-the-art monocular visual odometry (Libviso2) to work with omnidirectional cameras and single axis gyro to increase the system accuracy. The second contribution, it is an algorithm that considers low cost LIDAR data to estimate the motion scale and solve the limitations of monocular visual odometer systems. Finally, we propose an heterogeneous computing optimization that considers a Raspberry Pi GPU to improve the visual odometry runtime performance in low cost platforms. To test and evaluate FAST-FUSION, we created three open-source datasets in an outdoor environment. Results shows that FAST-FUSION is acceptable to run in real-time in low cost hardware and that outperforms the original Libviso2 approach in terms of time performance and motion estimation accuracy. © 2019 by the authors.