Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Interest
Topics
Details

Details

004
Publications

2021

Particle filter refinement based on clustering procedures for high-dimensional localization and mapping systems

Authors
Aguiar, AS; dos Santos, FN; Sobreira, H; Cunha, JB; Sousa, AJ;

Publication
Robotics and Autonomous Systems

Abstract

2021

Bringing Semantics to the Vineyard: An Approach on Deep Learning-Based Vine Trunk Detection

Authors
Aguiar, AS; Monteiro, NN; dos Santos, FN; Pires, EJS; Silva, D; Sousa, AJ; Boaventura Cunha, J;

Publication
Agriculture

Abstract
The development of robotic solutions in unstructured environments brings several challenges, mainly in developing safe and reliable navigation solutions. Agricultural environments are particularly unstructured and, therefore, challenging to the implementation of robotics. An example of this is the mountain vineyards, built-in steep slope hills, which are characterized by satellite signal blockage, terrain irregularities, harsh ground inclinations, and others. All of these factors impose the implementation of precise and reliable navigation algorithms, so that robots can operate safely. This work proposes the detection of semantic natural landmarks that are to be used in Simultaneous Localization and Mapping algorithms. Thus, Deep Learning models were trained and deployed to detect vine trunks. As significant contributions, we made available a novel vine trunk dataset, called VineSet, which was constituted by more than 9000 images and respective annotations for each trunk. VineSet was used to train state-of-the-art Single Shot Multibox Detector models. Additionally, we deployed these models in an Edge-AI fashion and achieve high frame rate execution. Finally, an assisted annotation tool was proposed to make the process of dataset building easier and improve models incrementally. The experiments show that our trained models can detect trunks with an Average Precision up to 84.16% and our assisted annotation tool facilitates the annotation process, even in other areas of agriculture, such as orchards and forests. Additional experiments were performed, where the impact of the amount of training data and the comparison between using Transfer Learning and training from scratch were evaluated. In these cases, some theoretical assumptions were verified.

2021

Measuring Canopy Geometric Structure Using Optical Sensors Mounted on Terrestrial Vehicles: A Case Study in Vineyards

Authors
da Silva, DQ; Aguiar, AS; dos Santos, FN; Sousa, AJ; Rabino, D; Biddoccu, M; Bagagiolo, G; Delmastro, M;

Publication
Agriculture

Abstract
Smart and precision agriculture concepts require that the farmer measures all relevant variables in a continuous way and processes this information in order to build better prescription maps and to predict crop yield. These maps feed machinery with variable rate technology to apply the correct amount of products in the right time and place, to improve farm profitability. One of the most relevant information to estimate the farm yield is the Leaf Area Index. Traditionally, this index can be obtained from manual measurements or from aerial imagery: the former is time consuming and the latter requires the use of drones or aerial services. This work presents an optical sensing-based hardware module that can be attached to existing autonomous or guided terrestrial vehicles. During the normal operation, the module collects periodic geo-referenced monocular images and laser data. With that data a suggested processing pipeline, based on open-source software and composed by Structure from Motion, Multi-View Stereo and point cloud registration stages, can extract Leaf Area Index and other crop-related features. Additionally, in this work, a benchmark of software tools is made. The hardware module and pipeline were validated considering real data acquired in two vineyards—Portugal and Italy. A dataset with sensory data collected by the module was made publicly available. Results demonstrated that: the system provides reliable and precise data on the surrounding environment and the pipeline is capable of computing volume and occupancy area from the acquired data.

2021

A Camera to LiDAR calibration approach through the Optimization of Atomic Transformations

Authors
de Aguiar, ASP; de Oliveira, MAR; Pedrosa, EF; dos Santos, FBN;

Publication
Expert Systems with Applications

Abstract

2021

Grape Bunch Detection at Different Growth Stages Using Deep Learning Quantized Models

Authors
Aguiar, AS; Magalhaes, SA; dos Santos, FN; Castro, L; Pinho, T; Valente, J; Martins, R; Boaventura Cunha, J;

Publication
Agronomy

Abstract
The agricultural sector plays a fundamental role in our society, where it is increasingly important to automate processes, which can generate beneficial impacts in the productivity and quality of products. Perception and computer vision approaches can be fundamental in the implementation of robotics in agriculture. In particular, deep learning can be used for image classification or object detection, endowing machines with the capability to perform operations in the agriculture context. In this work, deep learning was used for the detection of grape bunches in vineyards considering different growth stages: the early stage just after the bloom and the medium stage where the grape bunches present an intermediate development. Two state-of-the-art single-shot multibox models were trained, quantized, and deployed in a low-cost and low-power hardware device, a Tensor Processing Unit. The training input was a novel and publicly available dataset proposed in this work. This dataset contains 1929 images and respective annotations of grape bunches at two different growth stages, captured by different cameras in several illumination conditions. The models were benchmarked and characterized considering the variation of two different parameters: the confidence score and the intersection over union threshold. The results showed that the deployed models could detect grape bunches in images with a medium average precision up to 66.96%. Since this approach uses low resources, a low-cost and low-power hardware device that requires simplified models with 8 bit quantization, the obtained performance was satisfactory. Experiments also demonstrated that the models performed better in identifying grape bunches at the medium growth stage, in comparison with grape bunches present in the vineyard after the bloom, since the second class represents smaller grape bunches, with a color and texture more similar to the surrounding foliage, which complicates their detection.