Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
About

About

Ana Viana holds a PhD in Electrical and Computers Engineering (University of Porto, 2004).

She is Head of the Centre for Industrial Engineering and Management of INESC TEC and Coordinator Professor at the Polytechnic of Porto, School of Engineering.

Her research interests focus on Combinatorial Optimisation, both on the development of exact and (meta-)heuristics approaches.

She led several research projects with public funding and publishes regularly in reference scientific journals of her area of activity.

Interest
Topics
Details

Details

014
Publications

2023

Stochastic crowd shipping last-mile delivery with correlated marginals and probabilistic constraints

Authors
Silva, M; Pedroso, JP; Viana, A;

Publication
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH

Abstract
In this work, we study last-mile delivery with the option of crowd shipping. A company uses occasional drivers to complement its fleet in the activity of delivering products to its customers. We model it as a variant of the stochastic capacitated vehicle routing problem. Our approach is data-driven, where not only customer orders but also the availability of occasional drivers are uncertain. It is assumed that marginal distributions of the uncertainty vector are known, but the joint distribution is difficult to estimate. We optimize considering a worst-case joint distribution and model with a strategic planning perspective, where we calculate an optimal a priori solution before the uncertainty is revealed. A limit on the infea-sibility of the routes due to the capacity is imposed using probabilistic constraints. We propose an extended formulation for the problem using column-dependent rows and implement a branch-price-and-cut algorithm to solve it. We also develop a heuristic approximation to cope with larger instances of the problem. Through computational experiments, we analyze the solution and performance of the implemented algorithms.

2023

Preface to the Special Issue on Operations Research in Healthcare

Authors
Viana, A; Marques, I; Dias, JM;

Publication
INTERNATIONAL TRANSACTIONS IN OPERATIONAL RESEARCH

Abstract

2023

A data-driven compensation scheme for last-mile delivery with crowdsourcing

Authors
Barbosa, M; Pedroso, JP; Viana, A;

Publication
COMPUTERS & OPERATIONS RESEARCH

Abstract
A recent relevant innovation in last-mile delivery is to consider the possibility of goods being delivered by couriers appointed through crowdsourcing. In this paper we focus on the setting of in-store customers delivering goods, ordered by online customers, on their way home. We assume that not all the proposed delivery tasks will necessarily be accepted, and use logistic regression to model the crowd agents' willingness to undertake a delivery. This model is then used to build a novel compensation scheme that determines reward values, based on the current plan for the professional fleet's routes and on the couriers' probabilities of acceptance, by employing a direct search algorithm that seeks to minimise the expected cost.

2023

Deep reinforcement learning for stochastic last-mile delivery with crowdshipping

Authors
Silva, M; Pedroso, JP; Viana, A;

Publication
EURO JOURNAL ON TRANSPORTATION AND LOGISTICS

Abstract
We study a setting in which a company not only has a fleet of capacitated vehicles and drivers available to make deliveries but may also use the services of occasional drivers (ODs) willing to make deliveries using their own vehicles in return for a small fee. Under such a business model, a.k.a crowdshipping, the company seeks to make all the deliveries at the minimum total cost, i.e., the cost associated with their vehicles plus the compensation paid to the ODs.We consider a stochastic and dynamic last-mile delivery environment in which customer delivery orders, as well as ODs available for deliveries, arrive randomly throughout the day, within fixed time windows.We present a novel deep reinforcement learning (DRL) approach to the problem that can deal with large problem instances. We formulate the action selection problem as a mixed-integer optimization program.The DRL approach is compared against other optimization under uncertainty approaches, namely, sample -average approximation (SAA) and distributionally robust optimization (DRO). The results show the effective-ness of the DRL approach by examining out-of-sample performance.

2022

The Probabilistic Travelling Salesman Problem with Crowdsourcing

Authors
Santini, A; Viana, A; Klimentova, X; Pedroso, JP;

Publication
COMPUTERS & OPERATIONS RESEARCH

Abstract
We study a variant of the Probabilistic Travelling Salesman Problem arising when retailers crowdsource last-mile deliveries to their own customers, who can refuse or accept in exchange for a reward. A planner must identify which deliveries to offer, knowing that all deliveries need fulfilment, either via crowdsourcing or using the retailer's own vehicle. We formalise the problem and position it in both the literature about crowdsourcing and among routing problems in which not all customers need a visit. We show that to evaluate the objective function of this stochastic problem for even one solution, one needs to solve an exponential number of Travelling Salesman Problems. To address this complexity, we propose Machine Learning and Monte Carlo simulation methods to approximate the objective function, and both a branch-and-bound algorithm and heuristics to reduce the number of evaluations. We show that these approaches work well on small size instances and derive managerial insights on the economic and environmental benefits of crowdsourcing to customers.

Supervised
thesis

2021

Production Planning and scheduling in the Footwear Industry

Author
CARLOS ANDRÉ VAZ MOREIRA

Institution
IPP-ISEP

2019

A data-driven compensation scheme for last-mile delivery with crowdsourcing

Author
Miguel Moreira da Silva Lima Barbosa

Institution
UP-FCUP

2018

ANÁLISE DA REDE LOGÍSTICA E POLÍTICAS DE APROVISIONAMENTO NUMA EMPRESA DE DISTRIBUIÇÃO DE CONTADORES ELÉTRICOS

Author
VÍTOR NETO MAGALHÃES

Institution
IPP-ISEP

2017

Otimização do posicionamento de PMUs numa rede elétrica

Author
TIAGO RAFAEL PINTO MONTEIRO

Institution
IPP-ISEP

2015

Desenvolvimento de Sequenciador para um Problema de Roteamento de Veículos

Author
HÉLDER FILIPE DE CASTRO PINHEIRO

Institution
IPP-ISEP