2021
Authors
Campos D.F.; Pereira M.; Matos A.; Pinto A.M.;
Publication
Oceans Conference Record (IEEE)
Abstract
The worldwide context has fostered the innovation geared to the blue growth. However, the aquatic environment imposes many restrictions to mobile robots, as their perceptual capacity becomes severely limited. DIIUS aims to strengthen the perception of distributed robotic systems to improve the current procedures for inspection of aquatic structures (constructions and/or vessels).The perception of large working areas from multiples robots raises a number of unresolved inference problems and calls for new interaction patterns between multiple disciplines, both at the conceptual and technical level. To address this important challenge, the DIIUS project seeks to reinforce the current state-of-art in several scientific domains that fit into artificial intelligence, computer vision, and robotics. Through case studies focused on 3D mapping of aquatic structures (ex., maritime constructions and adduction tunnels), the project investigates new spatio-temporal data association techniques, including the correlation of sensors from heterogeneous robot formations operating in environments with communications constraints.
2021
Authors
Silva, A; Gomes, M; Vilela, JP; Harrison, WK;
Publication
SENSORS
Abstract
In order to secure wireless communications, we consider the usage of physical-layer security (PLS) mechanisms (i.e., coding for secrecy mechanisms) combined with self-interference generation. We present a prototype implementation of a scrambled coding for secrecy mechanisms with interference generation by the legitimate receiver and the cancellation of the effect of self-interference (SI). Regarding the SI cancellation, four state-of-the-art algorithms were considered: Least mean square (LMS), normalized least mean square (NLMS), recursive least squares (RLS) and QR decomposition recursive least squares (QRDRLS). The prototype implementation is performed in real-world software-defined radio (SDR) devices using GNU-Radio, showing that the LMS outperforms all other algorithms considered (NLMS, RLS and QRDRLS), being the best choice to use in this situation (SI cancellation). It was also shown that it is possible to secure communication using only noise generation by the legitimate receiver, though a variation of the packet loss rate (PLR) and the bit error rate (BER) gaps is observed when moving from the fairest to an advantageous or a disadvantageous scenario. Finally, when noise generation was combined with the adapted scrambled coding for secrecy with a hidden key scheme, a noteworthy security improvement was observed resulting in an increased BER for Eve with minor interference to Bob.
2021
Authors
Oliveira, AJ; Ferreira, BM; Cruz, NA;
Publication
JOURNAL OF MARINE SCIENCE AND ENGINEERING
Abstract
In underwater navigation, sonars are useful sensing devices for operation in confined or structured environments, enabling the detection and identification of underwater environmental features through the acquisition of acoustic images. Nonetheless, in these environments, several problems affect their performance, such as background noise and multiple secondary echoes. In recent years, research has been conducted regarding the application of feature extraction algorithms to underwater acoustic images, with the purpose of achieving a robust solution for the detection and matching of environmental features. However, since these algorithms were originally developed for optical image analysis, conclusions in the literature diverge regarding their suitability to acoustic imaging. This article presents a detailed comparison between the SURF (Speeded-Up Robust Features), ORB (Oriented FAST and Rotated BRIEF), BRISK (Binary Robust Invariant Scalable Keypoints), and SURF-Harris algorithms, based on the performance of their feature detection and description procedures, when applied to acoustic data collected by an autonomous underwater vehicle. Several characteristics of the studied algorithms were taken into account, such as feature point distribution, feature detection accuracy, and feature description robustness. A possible adaptation of feature extraction procedures to acoustic imaging is further explored through the implementation of a feature selection module. The performed comparison has also provided evidence that further development of the current feature description methodologies might be required for underwater acoustic image analysis.
2021
Authors
Correia, A; Paulino, D; Paredes, H; Fonseca, B; Jameel, S; Schneider, D; de Souza, JM;
Publication
PROCEEDINGS OF THE 2021 IEEE 24TH INTERNATIONAL CONFERENCE ON COMPUTER SUPPORTED COOPERATIVE WORK IN DESIGN (CSCWD)
Abstract
It has been a quarter of a century since the publication of the first edition of the IEEE International Conference on Computer Supported Cooperative Work in Design (CSCWD) held in 1996 in Beijing, China. Despite some attempts to empirically examine the evolution and identity of the field of CSCW and its related communities and disciplines, the scarcity of scientometric studies on the IEEE CSCWD research productivity is noteworthy. To fill this gap, this study reports on an exploratory quantitative analysis of the literature published in the IEEE CSCWD conference proceedings with the purpose of visualizing and understanding its structure and evolution for the 2001-2019 period. The findings offer valuable insights into the paper and author distribution, country and citation-level productivity indicators, degree of collaboration, and collaboration index. Through this analysis we also expect to get an initial overview of the IEEE CSCWD conference concerning the main topics being presented, most cited papers, and variances in the number of keywords, full-text views, and references.
2021
Authors
Reis, P; Carvalho, PH; Peixoto, PS; Segundo, MA; Oliveira, HP;
Publication
Universal Access in Human-Computer Interaction. Access to Media, Learning and Assistive Environments - 15th International Conference, UAHCI 2021, Held as Part of the 23rd HCI International Conference, HCII 2021, Virtual Event, July 24-29, 2021, Proceedings, Part II
Abstract
Antibiotics are widely applied for the treatment of humans and animals, being the Sulfonamides a special group. The presence of antibiotics in the aquatic environment causes the development antibiotic-resistant bacteria, which is related to the emerging of untreatable infectious diseases. One of the most common methods for determine it consists in high-performance liquid chromatography coupled with mass spectrom-etrym, which is not suitable for an in situ analysis strategy. One important property of sulfonamides is how the compound reacts when added the colorimetric reagent p-dimethylaminocinnamaldehyde, opening the possibility of using colorimetry to measure the concentration. To allow an analysis on the field, the solution needs to be fully mobile and practical. In this context, we recently developed a new screening method based on a computational application running over a picture of the sample; however, despite this approach improving the analysis process when compared to traditional methods, it is still not fully mobile. Smartphones’ computational capabilities are increasing and more powerful than many laptops of older generations. Taking this into account, we developed a mobile analysis application that leverages the computing power and ease of use of a smartphone. The acquired picture will pass through a color correction algorithm to normalize the capture considering the environmental lighting. When the algorithm finishes processing the image, the app will return the estimated concentration of the sample. This approach enables in situ analysis, without requiring an Internet connection nor specific analysis equipment, and the ability to have a rather precise guess of the level of contamination of any water. © Springer Nature Switzerland AG 2021.
2021
Authors
Soares, J; Fernandez, R; Silva, M; Freitas, T; Martins, R;
Publication
NETWORK AND SYSTEM SECURITY, NSS 2021
Abstract
Byzantine fault tolerant (BFT) protocols are designed to increase system dependability and security. They guarantee liveness and correctness even in the presence of arbitrary faults. However, testing and validating BFT systems is not an easy task. As is the case for most concurrent and distributed applications, the correctness of these systems is not solely dependant on algorithm and protocol correctness. Ensuring the correct behaviour of BFT systems requires exhaustive testing under real-world scenarios. An approach is to use fault injection tools that deliberate introduce faults into a target system to observe its behaviour. However, existing tools tend to be designed for specific applications and systems, thus cannot be used generically. We argue that more advanced and powerful tools and frameworks are needed for testing the security and safety of distributed applications in general, and BFT systems in particular. Specifically, a fault injection framework that can be integrated into both client and server side applications, for testing them exhaustively. We present ZERMIA, a modular and extensible fault injection framework, designed for testing and validating concurrent and distributed applications. We validate ZERMIA’s principles by conduction a series of experiments on a distributed applications and a state of the art BFT library, to show the benefits of ZERMIA for testing and validating applications. © 2021, Springer Nature Switzerland AG.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.