Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

2025

A sleek lock-free hash map in an ERA of safe memory reclamation methods

Authors
Moreno, P; Areias, M; Rocha, R;

Publication
PARALLEL COMPUTING

Abstract
Lock-free data structures have become increasingly significant due to their algorithmic advantages in multi-core cache-based architectures. Safe Memory Reclamation (SMR) is a technique used in concurrent programming to ensure that memory can be safely reclaimed without causing data corruption, dangling pointers, or access to freed memory. The ERA theorem states that any SMR method for concurrent data structures can only provide at most two of the three main desirable properties: Ease of use, Robustness, and Applicability. This fundamental trade-off influences the design of efficient lock-free data structures at an early stage. This work redesigns a previous lock-free hash map to fully exploit the properties of the ERA theorem and to leverage the characteristics of multi-core cache-based architectures by minimizing the number of cache misses, which are a significant bottleneck in multi-core environments. Experimental results show that our design outperforms the previous design, which was already quite competitive when compared against the Concurrent Hash Map design of the Intel's TBB library.

2025

LLM Prompt Engineering for Automated White-Box Integration Test Generation in REST APIs

Authors
Rincon, AM; Vincenzi, AMR; Faria, JP;

Publication
2025 IEEE INTERNATIONAL CONFERENCE ON SOFTWARE TESTING, VERIFICATION AND VALIDATION WORKSHOPS, ICSTW

Abstract
This study explores prompt engineering for automated white-box integration testing of RESTful APIs using Large Language Models (LLMs). Four versions of prompts were designed and tested across three OpenAI models (GPT-3.5 Turbo, GPT-4 Turbo, and GPT-4o) to assess their impact on code coverage, token consumption, execution time, and financial cost. The results indicate that different prompt versions, especially with more advanced models, achieved up to 90% coverage, although at higher costs. Additionally, combining test sets from different models increased coverage, reaching 96% in some cases. We also compared the results with EvoMaster, a specialized tool for generating tests for REST APIs, where LLM-generated tests achieved comparable or higher coverage in the benchmark projects. Despite higher execution costs, LLMs demonstrated superior adaptability and flexibility in test generation.

2025

Next Higher Point: Two Novel Approaches for Computing Natural Visibility Graphs

Authors
Daniel, P; Silva, VF; Ribeiro, P;

Publication
COMPLEX NETWORKS & THEIR APPLICATIONS XIII, COMPLEX NETWORKS 2024, VOL 1

Abstract
With the huge amount of data that has been collected over time, many methods are being developed to allow better understanding and forecasting in several domains. Time series analysis is a powerful tool to achieve this goal. Despite being a well-established area, there are some gaps, and new methods are emerging to overcome these limitations, such as visibility graphs. Visibility graphs allow the analyses of times series as complex networks and make possible the use of more advanced techniques from another well-established area, network science. In this paper, we present two new efficient approaches for computing natural visibility graphs from times series, one for online scenarios in.O(n log n) and the other for offline scenarios in.O(nm), the latter taking advantage of the number of different values in the time series (m).

2025

A Comparative Analysis of Centralized and Federated Learning for Multimodal ECG and PCG Classification

Authors
Silva M.G.; Oliveira B.; Coimbra M.; Renna F.; de Carvalho A.V.;

Publication
Annual International Conference of the IEEE Engineering in Medicine and Biology Society IEEE Engineering in Medicine and Biology Society Annual International Conference

Abstract
In this study, we analyzed federated learning (FL) for ECG and PCG data from the PhysioNet 2016 challenge dataset. We tested multiple approaches of FL and evaluated how these approaches affect the performance metrics of cardiac abnormality detection while preserving data privacy. We compared the performance of the centralized and federated models with two and four clients. The results demonstrated that multimodal federated models using both ECG and PCG data consistently outperformed centralized single-modality ECG or PCG models; in fact the gains provided by multimodal approaches can compensate for the loss in performance induced by distributed learning. These findings highlight the potential of multimodal federated learning to not only provide decentralization advantages but also to achieve comparable performance with the centralized single-modality approaches.Clinical relevance- The clinical relevance of this research lies in its potential to improve cardiovascular disease detection by exploring multimodal models and federated learning. It can also help to optimize machine learning models for real-world clinical deployment while preserving patient privacy and achieving comparable performance metrics.

2025

Performance Evaluation of Separate Chaining for Concurrent Hash Maps

Authors
Castro, A; Areias, M; Rocha, R;

Publication
MATHEMATICS

Abstract
Hash maps are a widely used and efficient data structure for storing and accessing data organized as key-value pairs. Multithreading with hash maps refers to the ability to concurrently execute multiple lookup, insert, and delete operations, such that each operation runs independently while sharing the underlying data structure. One of the main challenges in hash map implementation is the management of collisions. Arguably, separate chaining is among the most well-known strategies for collision resolution. In this paper, we present a comprehensive study comparing two common approaches to implementing separate chaining-linked lists and dynamic arrays-in a multithreaded environment using a lock-based concurrent hash map design. Our study includes a performance evaluation covering parameters such as cache behavior, energy consumption, contention under concurrent access, and resizing overhead. Experimental results show that dynamic arrays maintain more predictable memory access and lower energy consumption in multithreaded environments.

2025

Automated Social Media Feedback Analysis for Software Requirements Elicitation: A Case Study in the Streaming Industry

Authors
Silva, M; Faria, JP;

Publication
Proceedings of the 20th International Conference on Evaluation of Novel Approaches to Software Engineering, ENASE 2025, Porto, Portugal, April 4-6, 2025.

Abstract

  • 69
  • 4390