2022
Authors
Silva, R; Matos, A; Pinto, AM;
Publication
AUTONOMOUS ROBOTS
Abstract
Underwater autonomous manipulation is the capability of a mobile robot to perform intervention tasks that require physical contact with unstructured environments without continuous human supervision. Being difficult to assess the behaviour of existing motion planner algorithms, this research proposes a new planner evaluation metric to identify well-behaved planners for specialized tasks of inspection and monitoring of man-made underwater structures. This metric is named NEMU and combines three different performance indicators: effectiveness, safety and adaptability. NEMU deals with the randomization of sampling-based motion planners. Moreover, this article presents a benchmark of multiple planners applied to a 6 DoF manipulator operating underwater. Results conducted in real scenarios show that different planners are better suited for different tasks. Experiments demonstrate that the NEMU metric can be used to distinguish the performance of planners for particular movement conditions. Moreover, it identifies the most promising planner for collision-free motion planning, being a valuable contribution for the inspection of maritime structures, as well as for the manipulation procedures of autonomous underwater vehicles during close range operations.
2022
Authors
Brazdil, P; van Rijn, JN; Soares, C; Vanschoren, J;
Publication
Cognitive Technologies
Abstract
2022
Authors
Reis, D; Correia, FF;
Publication
2022 IEEE Symposium on Visual Languages and Human-Centric Computing, VL/HCC 2022, Rome, Italy, September 12-16, 2022
Abstract
The process of developing Dockerfiles is perceived by many developers as slow and based on trial-and-error, and it is hardly immediate to see the result of a change introduced into a Dockerfile. In this work we propose a plugin for Visual Studio Code, which we name Dockerlive, and that has the purpose of shortening the length of feedback loops. Namely, the plugin is capable of providing information to developers on a number of Dockerfile elements, as the developer is writing the Dockerfile. We achieve this through dynamic analysis of the resulting container, which the plugin builds and runs in the background. © 2022 IEEE.
2022
Authors
Ferreira, NM; Torres, JM; Sobral, P; Moreira, R; Soares, C;
Publication
ICAART: PROCEEDINGS OF THE 14TH INTERNATIONAL CONFERENCE ON AGENTS AND ARTIFICIAL INTELLIGENCE - VOL 3
Abstract
Analysis of sports performance using mobile and wearable devices is becoming increasingly popular, helping users improve their sports practice. In this context, the goal of this work has been the development of an Apple Watch application, capable of detecting important strokes in the table tennis sport, using a deep learning (DL) model. A dataset of table tennis strokes has been created based on the watch's accelerometer and gyroscope sensors. The dataset collection was done in the Portuguese table tennis federation training sites, from several athletes, supervised by their coaches. To obtain the best DL model, three different architecture models where trained, compared and evaluated, using the complete dataset: a LSTM based on Create ML/Core ML frameworks (62.70% F1 score) and two Tensorflow based architectures, a CNN-LSTM (96.02% F1 score) and a ConvLSTM (97.33% F1 score).
2022
Authors
Simões, AC; Pinto, A; Santos, J; Pinheiro, S; Romero, D;
Publication
Journal of Manufacturing Systems
Abstract
2022
Authors
Marcelino, CG; Torres, V; Carvalho, L; Matos, M; Miranda, V;
Publication
INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS
Abstract
Performance indicators, such as the SAIFI and the SAIDI, are commonly used by regulatory agencies to evaluate the performance of distribution companies (DisCos). Based on such indicators, it is common practice to apply penalties or grant rewards if the indicators are greater to or less than a given threshold. This work proposes a new multi-objective optimization model for pinpointing the critical assets involved in outage events based on past performance indicators, such as the SAIDI and the System Average Interruption Duration Exceeding Threshold (SAIDET) indexes. Our approach allows to retrieve the minimal set of assets in large historical interruption datasets that most contribute to past performance indicators. A case study using a real interruption dataset between the years 2011-2104 from a Brazilian DisCo revealed that the optimal inspection plan according to the decision maker preferences consist of 332 equipment out of a total of 5873. This subset of equipment, which contribute 61.90% and 55.76% to the observed SAIFI and SAIDET indexes in that period, can assist managerial decisions for preventive maintenance actions by prioritizing technical inspections to assets deemed as critical.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.