Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

2022

Human resource management practices at university spin-offs

Authors
Almeida, F;

Publication
INTERNATIONAL JOURNAL OF ORGANIZATIONAL ANALYSIS

Abstract
Purpose The purpose of this study is to explore the human resource management practices and the associated dimensions of quality of employment in university spin-offs. Through this, it becomes possible to explore and recognize the practices and difficulties placed on the employees of university spin-offs. Design/methodology/approach The United Nations Economic Commission for Europe (UNECE) framework to assess the quality of work in the European Union is adopted. It is used a qualitative approach through the development of four case studies at university spin-offs located in Portugal. These case studies relate to four sectors of activity, such as information technology, urban mobility, health and electronics. Findings The findings reveal that most of the challenges of quality of work in a spin-off university are common to those in an SME or micro company. Among these factors, the authors highlight the lack of job security, reduced or no social protection and very low income and nonwage pecuniary benefits. Other factors specific to university spin-offs also emerge, such as the numerous opportunities for skills development and training, the potentialities to become an entrepreneur and the high number of working hours that are necessary to face the vibrant market dynamics. Originality/value The study aims to contribute, in a theoretical and empirically grounded basis, to the knowledge about the quality of employment in a spin-off university. This work becomes relevant for policymakers to understand in depth the specific challenges faced by employees of a spin-off university.

2022

A Live Environment to Improve the Refactoring Experience

Authors
Fernandes, S; Aguiar, A; Restivo, A;

Publication
Proceedings of the 6th International Conference on the Art, Science, and Engineering of Programming, Programming 2022, Porto, Portugal, March 21-25, 2022

Abstract
Refactoring helps improve the design of software systems, making them more understandable, readable, maintainable, cleaner, and self-explanatory. Many refactoring tools allow developers to select and execute the best refactorings for their code. However, most of them lack quick and continuous feedback, support, and guidance, leading to a poor refactoring experience. To fill this gap, we are researching ways to increase liveness in refactoring. Live Refactoring consists of continuously knowing, in real-time, what and why to refactor. To explore the concept of Live Refactoring and its main components - recommendation, visualization, and application, we prototyped a Live Refactoring Environment focused on the Extract Method refactoring. With it, developers can receive recommendations about the best refactoring options and have support to apply them automatically. This work helped us reinforce the hypothesis that early and continuous refactoring feedback helps to shorten the time needed to create high-quality systems. © 2022 ACM.

2022

Schedule Peer-to-Peer Transactions of an Energy Community Using Particle Swarm

Authors
Vieira, M; Faia, R; Pinto, T; Vale, Z;

Publication
International Conference on the European Energy Market, EEM

Abstract
The integration of distributed energy resources contributes to accomplishing a balance between the supply and demand inside a local market. The operation of these markets is based on the peer-to-peer negotiations between users, whose cooperation leads to an increase in the social welfare of the community, thus creating a more user-centric market. This work fits in the context of the energy community, where members of a community can exchange energy in peer-to-peer transactions and use the public electricity grid as a backup. The market aims at maximizing the social welfare of the community considering the operational costs of all community members. A particle swarm optimization algorithm implemented in Python is used to solve the problem. © 2022 IEEE.

2022

Vineyard classification using OBIA on UAV-based RGB and multispectral data: A case study in different wine regions

Authors
Padua, L; Matese, A; Di Gennaro, SF; Morais, R; Peres, E; Sousa, JJ;

Publication
COMPUTERS AND ELECTRONICS IN AGRICULTURE

Abstract
Vineyard classification is an important process within viticulture-related decision-support systems. Indeed, it improves grapevine vegetation detection, enabling both the assessment of vineyard vegetative properties and the optimization of in-field management tasks. Aerial data acquired by sensors coupled to unmanned aerial vehicles (UAVs) may be used to achieve it. Flight campaigns were conducted to acquire both RGB and multispectral data from three vineyards located in Portugal and in Italy. Red, green, blue and near infrared orthorectified mosaics resulted from the photogrammetric processing of the acquired data. They were then used to calculate RGB and multispectral vegetation indices, as well as a crop surface model (CSM). Three different supervised machine learning (ML) approaches-support vector machine (SVM), random forest (RF) and artificial neural network (ANN)-were trained to classify elements present within each vineyard into one of four classes: grapevine, shadow, soil and other vegetation. The trained models were then used to classify vineyards objects, generated from an object-based image analysis (OBIA) approach, into the four classes. Classification outcomes were compared with an automatic point-cloud classification approach and threshold-based approaches. Results shown that ANN provided a better overall classification performance, regardless of the type of features used. Features based on RGB data showed better performance than the ones based only on multispectral data. However, a higher performance was achieved when using features from both sensors. The methods presented in this study that resort to data acquired from different sensors are suitable to be used in the vineyard classification process. Furthermore, they also may be applied in other land use classification scenarios.

2022

Dynamic remuneration of electricity consumers flexibility

Authors
Ribeiro, C; Pinto, T; Vale, Z; Baptista, J;

Publication
ENERGY REPORTS

Abstract
This paper proposes a decision support model to define electricity consumers' remuneration structures when providing consumption flexibility, optimized for different load regimes. The proposed model addresses the remuneration of consumers when participating in demand response programs, benefiting or penalizing those who adjust their consumption when needed. The model defines dynamic remuneration values with different natures for the aggregator (e.g. flexibility aggregator or curtailment service provider) and for the consumer. The preferences and perspective of both are considered, by incorporating variables that represent the energy price, the energy production and the flexibility of consumers. The validation is performed using real data from the Iberian market, and results enable to conclude that the proposed model adapts the remuneration values in a way that it is increased according to the consumers' elastic, while being reduced when the generation is higher. Consequently, the model boosts the active consumer participation when flexibility is required, while reaching a solution that represents an acceptable g tradeoff between the aggregators and the consumers. (C) 2022 The Authors. Published by Elsevier Ltd.

2022

Artificial Intelligence for Upper Gastrointestinal Endoscopy: A Roadmap from Technology Development to Clinical Practice

Authors
Renna, F; Martins, M; Neto, A; Cunha, A; Libanio, D; Dinis-Ribeiro, M; Coimbra, M;

Publication
DIAGNOSTICS

Abstract
Stomach cancer is the third deadliest type of cancer in the world (0.86 million deaths in 2017). In 2035, a 20% increase will be observed both in incidence and mortality due to demographic effects if no interventions are foreseen. Upper GI endoscopy (UGIE) plays a paramount role in early diagnosis and, therefore, improved survival rates. On the other hand, human and technical factors can contribute to misdiagnosis while performing UGIE. In this scenario, artificial intelligence (AI) has recently shown its potential in compensating for the pitfalls of UGIE, by leveraging deep learning architectures able to efficiently recognize endoscopic patterns from UGIE video data. This work presents a review of the current state-of-the-art algorithms in the application of AI to gastroscopy. It focuses specifically on the threefold tasks of assuring exam completeness (i.e., detecting the presence of blind spots) and assisting in the detection and characterization of clinical findings, both gastric precancerous conditions and neoplastic lesion changes. Early and promising results have already been obtained using well-known deep learning architectures for computer vision, but many algorithmic challenges remain in achieving the vision of AI-assisted UGIE. Future challenges in the roadmap for the effective integration of AI tools within the UGIE clinical practice are discussed, namely the adoption of more robust deep learning architectures and methods able to embed domain knowledge into image/video classifiers as well as the availability of large, annotated datasets.

  • 635
  • 4202