Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

2022

A kinesthetic teaching approach for automating micropipetting repetitive tasks

Authors
Rocha, C; Dias, J; Moreira, AP; Veiga, G; Costa, P;

Publication
INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY

Abstract
Nowadays, a laboratory operator in the areas of chemistry, biology or medicine spends considerable time performing micropipetting procedures, a common, monotonous and repetitive task which compromises the ergonomics of individuals, namely related to wrist musculoskeletal disorders. In this work, the design of a kinesthetic teaching approach for automating the micropipetting technique is presented, allowing to redirect the operator to other non-repetitive tasks, aiming to reduce the exposure to ergonomic risks. The proposed robotic solution has an innovative gripping system capable of supporting, actuating and regulating the volume of a manual micropipette. The system is able to configure the position of diverse laboratory materials, such as lab containers and plates, on the workbench through a collaborative robotic arm, providing flexibility to adapt to different procedures. A projected human-machine interface, which combines the display of information on the workbench with an infrared based interaction device was developed, providing a more intuitive interaction between the operator and the system during the configuration and operation phases. In contrast to the majority of the existing liquid handling systems, the proposed system allows the operator to place the materials freely on the workbench and the usage of different materials' variants, facilitating the implementation of the system in any laboratory. The attained performance and ease of use of the system were very encouraging since all the defined tasks in the conducted experiments were successfully performed by users with minimum training, highlighting its potential inclusion in the laboratory routine panorama.

2022

Real-Time Detection of Vehicle-Based Logistics Operations

Authors
Ribeiro, J; Tavares, J; Fontes, T;

Publication
INTELLIGENT TRANSPORT SYSTEMS (INTSYS 2021)

Abstract
Geolocation data is fundamental to businesses relying on vehicles such as logistics and transportation. With the advance of the technology, collecting geolocation data become increasingly accessible and affordable, which raised new opportunities for business intelligence. This paper addresses the application of geolocation data for monitoring logistics processes, namely for detecting vehicle-based operations in real time. A stream of geolocation entries is used for inferring stationary events. Data from an international logistics company is used as a case study, in which operations of loading/unloading of goods are not only identified but also quantified. The results of the case study demonstrate the effectiveness of the solution, showing that logistics operations can be inferred from geolocation data. Further meaningful information may be extracted from these inferred operations using process mining techniques.

2022

3DupIC: An Underwater Scan Matching Method for Three-Dimensional Sonar Registration

Authors
Ferreira, A; Almeida, J; Martins, A; Matos, A; Silva, E;

Publication
SENSORS

Abstract
This work presents a six degrees of freedom probabilistic scan matching method for registration of 3D underwater sonar scans. Unlike previous works, where local submaps are built to overcome measurement sparsity, our solution develops scan matching directly from the raw sonar data. Our method, based on the probabilistic Iterative Correspondence (pIC), takes measurement uncertainty into consideration while developing the registration procedure. A new probabilistic sensor model was developed to compute the uncertainty of each scan measurement individually. Initial displacement guesses are obtained from a probabilistic dead reckoning approach, also detailed in this document. Experiments, based on real data, demonstrate superior robustness and accuracy of our method with respect to the popular ICP algorithm. An improved trajectory is obtained by integration of scan matching updates in the localization data fusion algorithm, resulting in a substantial reduction of the original dead reckoning drift.

2022

Beyond Masks: On the Generalization of Masked Face Recognition Models to Occluded Face Recognition

Authors
Neto, PCP; Pinto, JR; Boutros, F; Damer, N; Sequeira, AF; Cardoso, JS;

Publication
IEEE ACCESS

Abstract
Over the years, the evolution of face recognition (FR) algorithms has been steep and accelerated by a myriad of factors. Motivated by the unexpected elements found in real-world scenarios, researchers have investigated and developed a number of methods for occluded face recognition (OFR). However, due to the SarS-Cov2 pandemic, masked face recognition (MFR) research branched from OFR and became a hot and urgent research challenge. Due to time and data constraints, these models followed different and novel approaches to handle lower face occlusions, i.e., face masks. Hence, this study aims to evaluate the different approaches followed for both MFR and OFR, find linked details about the two conceptually similar research directions and understand future directions for both topics. For this analysis, several occluded and face recognition algorithms from the literature are studied. First, they are evaluated in the task that they were trained on, but also on the other. These methods were picked accordingly to the novelty of their approach, proven state-of-the-art results, and publicly available source code. We present quantitative results on 4 occluded and 5 masked FR datasets, and a qualitative analysis of several MFR and OFR models on the Occ-LFW dataset. The analysis presented, sustain the interoperable deployability of MFR methods on OFR datasets, when the occlusions are of a reasonable size. Thus, solutions proposed for MFR can be effectively deployed for general OFR.

2022

Automatic Configuration of Genetic Algorithm for the Optimization of Electricity Market Participation Using Sequential Model Algorithm Configuration

Authors
Oliveira, V; Pinto, T; Faia, R; Veiga, B; Soares, JP; Romero, R; Vale, Z;

Publication
Progress in Artificial Intelligence - 21st EPIA Conference on Artificial Intelligence, EPIA 2022, Lisbon, Portugal, August 31 - September 2, 2022, Proceedings

Abstract

2022

Review on the Energy Storage Technologies with the Focus on Multi-Energy Systems

Authors
Vahid-Ghavidel M.; Javadi S.; Gough M.; Javadi M.S.; Santos S.F.; Shafie-Khah M.; Catalão J.P.S.;

Publication
Technologies for Integrated Energy Systems and Networks

Abstract
Energy storage is an important element of an energy system. In the power system, energy storage can be defined as a component that can be employed to generate a form of energy or utilize previously stored energy at different locations or times when it is required. Energy storage can enhance the stability of the grid, increase the reliability and efficiency of integrated systems that include renewable energy resources, and can also reduce emissions. A diverse set of storage technologies are currently utilized for the energy storage systems (ESSs) in a varied set of projects. This chapter provides information about the current ESS projects around the world and emphasizes the leading countries that are developing the applications of ESSs. The main categories of ESSs are explained in this chapter as follows: electrochemical, electromechanical, electromagnetic, and thermal storage. Moreover, the energy storage technologies are utilized in power grids for various reasons such as electricity supply capacity, electric energy time-shifting, on-site power, electric supply reserve capacity, frequency regulation, voltage support, and electricity bill management. Additionally, by integrating the various energy forms and developing the concept of multi-energy systems, ESSs become a fundamental component for the efficient operation of multi-energy systems. The main role of ESSs in multi-energy systems is to compensate for the fluctuations in power output from renewable energy resources. Moreover, the performance of the multi-energy system increases when it got integrated with an ESS. In this chapter, the applied ESS technologies in the context of the multi-energy systems are presented and explained.

  • 603
  • 4201