Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

2022

A comprehensive framework and literature review of supplier selection under different purchasing strategies

Authors
Saputro, TE; Figueira, G; Almada Lobo, B;

Publication
COMPUTERS & INDUSTRIAL ENGINEERING

Abstract
Supplier selection has received substantial consideration in the literature since it is considered one of the key levers contributing to a firm's success. Selecting the right suppliers for different product items requires an appropriate problem framing and a suitable approach. Despite the vast literature on this topic, there is not a comprehensive framework underlying the supplier selection process that addresses those concerns. This paper formalizes a framework that provides guidance on how supplier selection should be formulated and approached for different types of items segmented in Kraljic's portfolio matrix and production policies. The framework derives from a thorough literature review, which explores the main dimensions in supplier selection, including sourcing strategy, decision scope and environment, selection criteria, and solution approaches. 326 papers, published from 2000 to 2021, were reviewed for said purpose. The results indicate that supplier selection regarding items with a high purchasing importance should lead to holistic selection criteria. In addition, items comprising a high complexity of supply and production activities should require integrated selection and different sources of uncertainty associated with decision scope and environment, respectively, to solve it, as well as hybrid approaches. There are still many research opportunities in the supplier selection area, particularly in the integrated selection problems and hybrid solution methods, as well as in the risk mitigation, sustainability goals, and new technology adoption.

2022

Long-Period Fiber Gratings Coated with Poly(ethylene glycol) as Relative Humidity Sensors

Authors
Dias, B; de Almeida, JMMM; Coelho, LCC;

Publication
U.Porto Journal of Engineering

Abstract
Relative humidity is an important parameter in controlled environments and is typically monitored using low-cost electrochemical sensors with low resolution and accuracy. This kind of sensors cannot not be implemented in harsh or explosive environments (as in pyrotechnic facilities) due to electrical discharges, or in marine structures where the oxidation of the sensing probe materials changes the sensing response). In these cases, fiber optic sensors can provide solutions due to their intrinsic properties, such as immunity to electromagnetic interference and resistance in harsh environments. This work presents preliminary results regarding the steps of the fabrication of Long-Period Fiber Gratings, the coating processes with a thin layer of poly(ethylene glycol) (PEG) and its sensing performance to relative humidity, displaying a from 60 to 100%sensitivity of 0.6 nm/%RH in the range of 80 to 100%RH. © 2022, Universidade do Porto - Faculdade de Engenharia. All rights reserved.

2022

Special issue on selected papers from the 14th International Conference on Formal Aspects of Component Software (FACS 2017)

Authors
Proença, J; Lumpe, M;

Publication
Sci. Comput. Program.

Abstract

2022

The Latest Advances on AI and Robotics Applications

Authors
Silva, M;

Publication
Journal of Artificial Intelligence and Technology

Abstract
[No abstract available]

2022

Using deep learning for automatic detection of insects in traps

Authors
Teixeira, AC; Morais, R; Sousa, JJ; Peres, E; Cunha, A;

Publication
CENTERIS 2022 - International Conference on ENTERprise Information Systems / ProjMAN - International Conference on Project MANagement / HCist - International Conference on Health and Social Care Information Systems and Technologies 2022, Hybrid Event / Lisbon, Portugal, November 9-11, 2022.

Abstract

2022

Reinforcement Learning for Collaborative Robots Pick-and-Place Applications: A Case Study

Authors
Gomes, NM; Martins, FN; Lima, J; Wörtche, H;

Publication
Automation

Abstract
The number of applications in which industrial robots share their working environment with people is increasing. Robots appropriate for such applications are equipped with safety systems according to ISO/TS 15066:2016 and are often referred to as collaborative robots (cobots). Due to the nature of human-robot collaboration, the working environment of cobots is subjected to unforeseeable modifications caused by people. Vision systems are often used to increase the adaptability of cobots, but they usually require knowledge of the objects to be manipulated. The application of machine learning techniques can increase the flexibility by enabling the control system of a cobot to continuously learn and adapt to unexpected changes in the working environment. In this paper we address this issue by investigating the use of Reinforcement Learning (RL) to control a cobot to perform pick-and-place tasks. We present the implementation of a control system that can adapt to changes in position and enables a cobot to grasp objects which were not part of the training. Our proposed system uses deep Q-learning to process color and depth images and generates an ?-greedy policy to define robot actions. The Q-values are estimated using Convolution Neural Networks (CNNs) based on pre-trained models for feature extraction. To reduce training time, we implement a simulation environment to first train the RL agent, then we apply the resulting system on a real cobot. System performance is compared when using the pre-trained CNN models ResNext, DenseNet, MobileNet, and MNASNet. Simulation and experimental results validate the proposed approach and show that our system reaches a grasping success rate of 89.9% when manipulating a never-seen object operating with the pre-trained CNN model MobileNet.

  • 591
  • 4201