2025
Authors
Vieira, AB; Valente, M; Montezuma, D; Albuquerque, T; Ribeiro, L; Oliveira, D; Monteiro, JC; Gonçalves, S; Pinto, IM; Cardoso, JS; Oliveira, AL;
Publication
CoRR
Abstract
2025
Authors
Micael Simões; André G. Madureira; João A. Peças Lopes;
Publication
2025 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT Europe)
Abstract
2025
Authors
Eriksson, M; Purificato, E; Noroozian, A; Vinagre, J; Chaslot, G; Gómez, E; Llorca, DF;
Publication
CoRR
Abstract
2025
Authors
Mazur, PG; Gamer, FC; Ramos, AG; Schoder, D;
Publication
INTERNATIONAL TRANSACTIONS IN OPERATIONAL RESEARCH
Abstract
At the practical level, the static stability constraint is one of the most important constraints in practical pallet loading problems, such as air cargo palletizing. Approaches to modeling static stability, which range from base support and mechanical equilibrium calculations to physical simulation, differ in workflow, focus, and assumptions, so choosing the right static stability approach has a substantial impact on the quality of the solution and, ultimately, on loading security. To date, little research has investigated the structural differences between approaches. The aim of this paper is to integrate knowledge and shed light on the applicability of the different approaches for the practical scenario of air cargo palletizing. We tackle this problem through (1) a reformulation and extension of static stability toward loading stability, (2) a conceptual analysis of current approaches, and (3) benchmarking that employs an independent multibody simulation on multiple heterogeneous datasets. Our results show that all approaches are prone to structure errors and vary significantly in their premises and information usage. Further, full base support is revealed to be the most restrictive approach by far, while physical simulation achieves the greatest accuracy. Given the trade-off between accuracy and runtime, the mechanical equilibrium approach is a good choice, while partial base support performs best for lower support values.
2025
Authors
Alves, B; Almeida, A; Silva, C; Pais, D; Ribeiro, RP; Gama, J; Fernandes, JM; Brás, S; Sebastiao, R;
Publication
HUMAN AND ARTIFICIAL RATIONALITIES. ADVANCES IN COGNITION, COMPUTATION, AND CONSCIOUSNESS, HAR 2024
Abstract
Pain is a highly subjective phenomenon that depends on multiple factors. The common methods used to evaluate pain require the person to be awakened and cooperative, which may not always be possible. Moreover, such methods are subject to non-quantifiable influences, namely the impact of an individual's emotional state on how pain is perceived or how negative emotions may exacerbate pain perception, while positive emotions may attenuate it. The goal of this study was to conduct a novel protocol for pain induction with emotional elicitation and assess its feasibility. In this protocol, the physiological responses were monitored, and collected, through Electrocardiogram, Electrodermal Activity, and surface Electromyogram signals. Along the protocol, the pain perception was evaluated using a 0-10 numerical rating scale and by registering the time from the pain stimulus beginning to the Pain and Tolerance Thresholds. This study comprised three emotional sessions, negative, positive, and neutral, which were performed through videos of excerpts of terror, comedy, and documentary films, respectively, followed by pain induction using the Cold Pressor Task (CPT). A total of 56 participants performed the study, with a CPT mean time of about 91.70 +/- 39.64 s among all the sessions. The conducted protocol was considered feasible and safe as it allowed the collection of physiological data, pain, and questionnaires' reports from 56 participants, without any harm to them. Moreover, the collected data can be further used to assess how emotional conditions influence pain perception and to provide better emotion-calibrated pain recognition systems based on physiological signals.
2025
Authors
da Silva, JMPP; Duarte Nunes, G; Ferreira, A;
Publication
Abstract
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.