2023
Authors
Marques, P; Correia, FF;
Publication
CoRR
Abstract
2023
Authors
Oliveira, EE; Migueis, VL; Borges, JL;
Publication
JOURNAL OF INTELLIGENT MANUFACTURING
Abstract
Root cause analysis (RCA) is the process through which we find the true cause of a problem. It is a crucial process in manufacturing, as only after finding the root cause and addressing it, it is possible to improve the manufacturing operation. However, this is a very time-consuming process, especially if the amount of data about the manufacturing operation is considerable. With the increase in automation and the advent of Industry 4.0, sensorization of manufacturing environments has expanded, increasing with it the data available. The conjuncture described gives rise to the challenge and the opportunity of automatizing root cause analysis (at least partially), making this process more efficient, using tools from data mining and machine learning to help the analyst find the root cause of a problem. This paper presents an overview of the literature that has been published in the last 17 years on developing automatic root cause analysis (ARCA) solutions in manufacturing. The literature on the topic is disperse and it is currently lacking a connecting thread. As such, this study analyzes how previous studies developed the different elements of an ARCA solution for manufacturing: the types of data used, the methodologies, and the evaluation measures of the methods proposed. The proposed conceptualization establishes the base on which future studies on ARCA can develop results from this analysis, identifying gaps in the literature and future research opportunities.
2023
Authors
Yalçinkaya, B; Couceiro, MS; Soares, SP; Valente, A;
Publication
Sensors
Abstract
2023
Authors
Guimaraes, M; Carneiro, D; Palumbo, G; Oliveira, F; Oliveira, O; Alves, V; Novais, P;
Publication
ELECTRONICS
Abstract
Despite major advances in recent years, the field of Machine Learning continues to face research and technical challenges. Mostly, these stem from big data and streaming data, which require models to be frequently updated or re-trained, at the expense of significant computational resources. One solution is the use of distributed learning algorithms, which can learn in a distributed manner, from distributed datasets. In this paper, we describe CEDEs-a distributed learning system in which models are heterogeneous distributed Ensembles, i.e., complex models constituted by different base models, trained with different and distributed subsets of data. Specifically, we address the issue of predicting the training time of a given model, given its characteristics and the characteristics of the data. Given that the creation of an Ensemble may imply the training of hundreds of base models, information about the predicted duration of each of these individual tasks is paramount for an efficient management of the cluster's computational resources and for minimizing makespan, i.e., the time it takes to train the whole Ensemble. Results show that the proposed approach is able to predict the training time of Decision Trees with an average error of 0.103 s, and the training time of Neural Networks with an average error of 21.263 s. We also show how results depend significantly on the hyperparameters of the model and on the characteristics of the input data.
2023
Authors
Fernandes, L; Oliveira, HP;
Publication
IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2023, Istanbul, Turkiye, December 5-8, 2023
Abstract
Amongst the different types of cancer, lung cancer is the one with the highest mortality rate and consequently, there is an urgent need to develop early detection methods to improve the survival probabilities of the patients. Due to the millions of deaths that are caused annually by cancer, there is large interest int the scientific community to developed deep learning models that can be employed in computer aided diagnostic tools.Currently, in the literature, there are several works in the Radiomics field that try to develop new solutions by employing learning models for lung nodule classification. However, in these types of application, it is usually required to extract the lung nodule from the input images, while using a segmentation mask made by a radiologist. This means that in a clinical scenario, to be able to employ the developed learning models, it is required first to manually segment the lung nodule. Considering the fact that several patients are attended daily in the hospital with suspicion of lung cancer, the segmentation of each lung nodule would become a tiresome task. Furthermore, the available algorithms for automatic lung nodule segmentation are not efficient enough to be used in a real application.In response to the current limitations of the state of the art, the proposed work attempts to evaluate a multitasking approach where both the segmentation and the classification task are executed in parallel. As a baseline, we also study a sequential approach where first we employ DL models to segment the lung nodule, corp the lung nodule from the input image and then finally, we classify the cropped nodule. Our results show that the multitasking approach is better than to sequentially execute the segmentation and classification task for lung nodule classification. For instances, while the multitasking approach was able to achieve an AUC of 84.49% in the classification task, the sequential approach was only able to achieve an AUC of 72.43%. These results show that the proposed multitasking approach can become a viable alternative to the classification and segmentation of lung nodules.
2023
Authors
Carvalho, CL; Barbosa, B; Santos, CA;
Publication
Advances in Business Strategy and Competitive Advantage
Abstract
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.