Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

2023

Privacy-Preserving Machine Learning in Life Insurance Risk Prediction

Authors
Pereira, K; Vinagre, J; Alonso, AN; Coelho, F; Carvalho, M;

Publication
MACHINE LEARNING AND PRINCIPLES AND PRACTICE OF KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2022, PT II

Abstract
The application of machine learning to insurance risk prediction requires learning from sensitive data. This raises multiple ethical and legal issues. One of the most relevant ones is privacy. However, privacy-preserving methods can potentially hinder the predictive potential of machine learning models. In this paper, we present preliminary experiments with life insurance data using two privacy-preserving techniques: discretization and encryption. Our objective with this work is to assess the impact of such privacy preservation techniques in the accuracy of ML models. We instantiate the problem in three general, but plausible Use Cases involving the prediction of insurance claims within a 1-year horizon. Our preliminary experiments suggest that discretization and encryption have negligible impact in the accuracy of ML models.

2023

2D LiDAR-Based System for Canopy Sensing in Smart Spraying Applications

Authors
Baltazar, AR; Dos Santos, FN; De Sousa, ML; Moreira, AP; Cunha, JB;

Publication
IEEE ACCESS

Abstract
The efficient application of phytochemical products in agriculture is a complex issue that demands optimised sprayers and variable rate technologies, which rely on advanced sensing systems to address challenges such as overdosage and product losses. This work developed a system capable of processing different tree canopy parameters to support precision fruit farming and environmental protection using intelligent spraying methodologies. This system is based on a 2D light detection and ranging (LiDAR) sensor and a Global Navigation Satellite System (GNSS) receiver integrated into a sprayer driven by a tractor. The algorithm detects the canopy boundaries, allowing spray only in the presence of vegetation. The spray volume spared evaluates the system's performance compared to a Tree Row Volume (TRV) methodology. The results showed a 28% reduction in the overdosage of spraying product. The second step in this work was calculating and adjusting the amount of liquid to apply based on the tree volume. Considering this parameter, the saving obtained had an average value for the right and left rows of 78%. The volume of the trees was also monitored in a georeferenced manner with the creation of a occupation grid map. This map recorded the trajectory of the sprayer and the detected trees according to their volume.

2023

Modelling with NGSI-LD: the VALLPASS project case study

Authors
Ribeiro, T; Coelho, JP; Jorge, L; Sardao, J; Gonçalves, J; Rosse, H;

Publication
2023 IEEE 21ST INTERNATIONAL CONFERENCE ON INDUSTRIAL INFORMATICS, INDIN

Abstract
The smart cities paradigm covers multiple domains which span from citizens' accessibility and mobility to general infrastructures and services. Hence, smart cities can be seen as an excellent showcase of heterogeneity, namely at the data level. For this reason, they are a perfect candidate for linked data and semantic web concept applications. This powerful combination leads to interoperability at the data level which is one of the ultimate goals of the Internet of Things (IoT). In this reference frame, NGSI-LD is an open framework for context information processing consisting of both a semantic information model and a RESTful Application Programming Interface (API). This paper proposes a methodology for creating semantic data models in the context of IoT, namely to represent and describe data associated with digital twins. The methodology is presented in a practical way, through the process of creating an NGSI-LD semantic data model for the VALLPASS project, inserted in the traffic domain, which is one of the most popular in smart cities.

2023

Exploring the Intersection of Storytelling, Localisation, and Immersion in Video Games - A Case Study of the Witcher III: Wild Hunt

Authors
Cesário, V; Ribeiro, M; Coelho, A;

Publication
HCI International 2023 Posters - 25th International Conference on Human-Computer Interaction, HCII 2023, Copenhagen, Denmark, July 23-28, 2023, Proceedings, Part I

Abstract

2023

Ten Years of Active Learning Techniques and Object Detection: A Systematic Review

Authors
Garcia, D; Carias, J; Adao, T; Jesus, R; Cunha, A; Magalhaes, LG;

Publication
APPLIED SCIENCES-BASEL

Abstract
Object detection (OD) coupled with active learning (AL) has emerged as a powerful synergy in the field of computer vision, harnessing the capabilities of machine learning (ML) to automatically identify and perform image-based objects localisation while actively engaging human expertise to iteratively enhance model performance and foster machine-based knowledge expansion. Their prior success, demonstrated in a wide range of fields (e.g., industry and medicine), motivated this work, in which a comprehensive and systematic review of OD and AL techniques was carried out, considering reputed technical/scientific publication databases-such as ScienceDirect, IEEE, PubMed, and arXiv-and a temporal range between 2010 and December 2022. The primary inclusion criterion for papers in this review was the application of AL techniques for OD tasks, regardless of the field of application. A total of 852 articles were analysed, and 60 articles were included after full screening. Among the remaining ones, relevant topics such as AL sampling strategies used for OD tasks and groups categorisation can be found, along with details regarding the deep neural network architectures employed, application domains, and approaches used to blend learning techniques with those sampling strategies. Furthermore, an analysis of the geographical distribution of OD researchers across the globe and their affiliated organisations was conducted, providing a comprehensive overview of the research landscape in this field. Finally, promising research opportunities to enhance the AL process were identified, including the development of novel sampling strategies and their integration with different learning techniques.

2023

Customer Success Analysis and Modeling in Digital Marketing

Authors
César, I; Pereira, I; Madureira, A; Coelho, D; Rebelo, A; de Oliveira, A;

Publication
International Journal of Computer Information Systems and Industrial Management Applications

Abstract
Digital Marketing sets a sequence of strategies responsible for maximizing the interaction between companies and their target audience. One of them, known as Customer Success, establishes long-term techniques capable of projecting the sustainable value of a given customer to a company, monitoring the indexers that translate its activities. Therefore, this paper intends to address the need to develop an innovative tool that allows the creation of a temporal knowledge base composed of the behavioral evolution of customers. The CRISP-DM model benefits the processing and modeling of data capable of generating knowledge through the application and combination of the results obtained by machine learning algorithms specialized in time series. Time Series K-Means allows the clustering and differentiation of consumers characterized by their similar habits. Through the formulation of profiles, it is possible to apply forecasting methods that predict the following trends. The proposed solution provides the understanding of time series that profile the flow of customer activity and the use of the evidenced dynamics for the future prediction of these behaviors. © MIR Labs, www.mirlabs.net/ijcisim/index.html

  • 520
  • 4201