Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

2023

Addressing Imperfect Symmetry: a Novel Symmetry-Learning Actor-Critic Extension

Authors
Abreu, M; Reis, LP; Lau, N;

Publication
CoRR

Abstract

2023

A Systematic Review of Teacher-Facing Dashboards for Collaborative Learning Activities and Tools in Online Higher Education

Authors
Romão, T; Pestana, P; Morgado, L;

Publication
4th International Computer Programming Education Conference, ICPEC 2023, June 26-28, 2023, Vila do Conde, Portugal

Abstract
Dashboard for online higher education support monitoring and evaluation of students’ interactions, but mostly limited to interaction occurring within learning management systems. In this study, we sought to find which collaborative learning activities and tools in online higher education are included in teaching dashboards. By following Kitchenham’s procedure for systematic reviews, 36 papers were identified according to this focus and analysed. The results identify dashboards supporting collaborative tools, both synchronous and asynchronous, along categories such as learning management systems, communication tools, social media, computer programming code management platforms, project management platforms, and collaborative writing tools. Dashboard support was also found for collaborative activities, grouped under four categories of forum discussion activities, three categories of communication activities and four categories of collaborative editing/sharing activities, though most of the analysed dashboards only provide support for no more than two or three collaborative tools. This represents a need for further research on how to develop dashboards that combine data from a more diverse set of collaborative activities and tools. © Tiago Romão, Pedro Pestana, and Leonel Morgado; licensed under Creative Commons License CC-BY 4.0.

2023

Fractal Bilinear Deep Neural Network Models for Gastric Intestinal Metaplasia Detection

Authors
Pedroso, M; Martins, ML; Libânio, D; Dinis-Ribeiro, M; Coimbra, M; Renna, F;

Publication
2023 IEEE EMBS INTERNATIONAL CONFERENCE ON BIOMEDICAL AND HEALTH INFORMATICS, BHI

Abstract
Gastric Intestinal Metaplasia (GIM) is a precancerous gastric lesion and its early detection facilitates patient followup, thus lowering significantly the risk of death by gastric cancer. However, effective screening of this condition is a very challenging task, resulting low intra and inter-observer concordance. Computer assisted diagnosis systems leveraging deep neural networks (DNNs) have emerged as a way to mitigate these ailments. Notwithstanding, these approaches typically require large datasets in order to learn invariance to the extreme variations typically present in Esophagogastroduodenoscopy (EGD) still frames, such as perspective, illumination, and scale. Hence, we propose to combine a priori information regarding texture characteristics of GIM with data-driven DNN solutions. In particular, we define two different models that treat pre-trained DNNs as general features extractors, whose pairwise interactions with a collection of highly invariant local texture descriptors grounded on fractal geometry are computed by means of an outer product in the embedding space. Our experiments show that these models outperform a baseline DNN by a significant margin over several metrics (e.g., area under the curve (AUC) 0.792 vs. 0.705) in a dataset comprised of EGD narrow-band images. Our best model measures double the positive likelihood ratio when compared to a baseline GIM detector.

2023

Sound-Based Anomalies Detection in Agricultural Robotics Application

Authors
Baltazar, AR; dos Santos, FN; Soares, SP; Moreira, AP; Cunha, JB;

Publication
PROGRESS IN ARTIFICIAL INTELLIGENCE, EPIA 2023, PT II

Abstract
Agricultural robots are exposed to adverse conditions reducing the components' lifetime. To reduce the number of inspection, repair and maintenance activities, we propose using audio-based systems to diagnose and detect anomalies in these robots. Audio-based systems are non-destructive/intrusive solutions. Besides, it provides a significant amount of data to diagnose problems and for a wiser scheduler for preventive activities. So, in this work, we installed two microphones in an agricultural robot with a mowing tool. Real audio data was collected with the robotic mowing tool operating in several conditions and stages. Besides, a Sound-based Anomalies Detector (SAD) is proposed and tested with this dataset. The SAD considers a short-time Fourier transform (STFT) computation stage connected to a Support Vector Machine (SVM) classifier. The results with the collected dataset showed an F1 score between 95% and 100% in detecting anomalies in a mowing robot operation.

2023

STC plus K: a Semi-global triangular and degree centrality method to identify influential spreaders in complex networks

Authors
Sadhu, S; Namtirtha, A; Malta, MC; Dutta, A;

Publication
2023 IEEE INTERNATIONAL CONFERENCE ON WEB INTELLIGENCE AND INTELLIGENT AGENT TECHNOLOGY, WI-IAT

Abstract
Influential spreaders contribute substantially to managing and optimizing any spreading process in a network. Influential spreaders are nodes that hold importance within the network. Identifying them is a challenging task. Some encysting methods for such identification include local-structure-based, global-structure-based, semi-global-structure-based, and hybrid-structure-based methods. Semi-global structure-based methods show significant potential in identifying influential nodes in different network structures. However, existing semi-global structure-based methods often identify nodes from the network's periphery, where nodes are loosely connected, and their collective influence in spreading processes is minimal. This paper presents a novel method called Semi-global triangular and degree centrality (STC + K) to overcome this limitation by considering a node's degree, the number of triangles, and the third hop of neighbourhood connectivity information. The proposed novel method outperforms the existing noteworthy indexing methods regarding ranking performance. The experimental results show better performance, as indicated by two performance metrics: recognition rate and improvement percentage. By virtue of the fact that the empirically set free parameters are absent, our method eliminates the need for time-consuming preprocessing to select optimal parameter values for ranking nodes in large networks.

2023

Feature-Based Place Recognition Using Forward-Looking Sonar

Authors
Gaspar, AR; Matos, A;

Publication
JOURNAL OF MARINE SCIENCE AND ENGINEERING

Abstract
Some structures in the harbour environment need to be inspected regularly. However, these scenarios present a major challenge for the accurate estimation of a vehicle's position and subsequent recognition of similar images. In these scenarios, visibility can be poor, making place recognition a difficult task as the visual appearance of a local feature can be compromised. Under these operating conditions, imaging sonars are a promising solution. The quality of the captured images is affected by some factors but they do not suffer from haze, which is an advantage. Therefore, a purely acoustic approach for unsupervised recognition of similar images based on forward-looking sonar (FLS) data is proposed to solve the perception problems in harbour facilities. To simplify the variation of environment parameters and sensor configurations, and given the need for online data for these applications, a harbour scenario was recreated using the Stonefish simulator. Therefore, experiments were conducted with preconfigured user trajectories to simulate inspections in the vicinity of structures. The place recognition approach performs better than the results obtained from optical images. The proposed method provides a good compromise in terms of distinctiveness, achieving 87.5% recall considering appropriate constraints and assumptions for this task given its impact on navigation success. That is, it is based on a similarity threshold of 0.3 and 12 consistent features to consider only effective loops. The behaviour of FLS is the same regardless of the environment conditions and thus this work opens new horizons for the use of these sensors as a great aid for underwater perception, namely, to avoid degradation of navigation performance in muddy conditions.

  • 472
  • 4211