Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

2025

Sound Design for Electric Vehicles: Enhancing Safety and User Experience Through Acoustic Vehicle Alerting System (AVAS)

Authors
Rodrigues Ferraz Esteves, AR; Campos Magalhães, EM; Bernardes De Almeida, G;

Publication
SAE Technical Papers

Abstract
Silent motors are an excellent strategy to combat noise pollution. Still, they can pose risks for pedestrians who rely on auditory cues for safety and reduce driver awareness due to the absence of the familiar sounds of combustion engines. Sound design for silent motors not only tackles the above issues but goes beyond safety standards towards a user-centered approach by considering how users perceive and interpret sounds. This paper examines the evolving field of sound design for electric vehicles (EVs), focusing on Acoustic Vehicle Alerting Systems (AVAS). The study analyzes existing AVAS, classifying them into different groups according to their design characteristics, from technical concerns and approaches to aesthetic properties. Based on the proposed classification, an (adaptive) sound design methodology, and concept for AVAS are proposed based on state-of-the-art technologies and tools (APIs), like Wwise Automotive, and integration through a functional prototype within a virtual environment. We validate our solution by conducting user tests focusing on EV sound perception and preferences in rural and urban environments. Results showed participants preferred nature-like and melodic sounds with a wide range of frequencies, emphasizing 1000Hz, in rural areas, for the AVAS. For the interior experience, melodic, reliable, and relaxing sounds with a frequency range from 200Hz to 500Hz. In urban areas, melodic, futuristic, but not overpowering sounds (80Hz to 700Hz) with balanced frequencies at high speeds were chosen for the car's exterior. In the interior, melodic, futuristic, and combustion engine-like sounds with a low frequencies background and higher frequencies at high speeds were also preferred. © 2025 SAE International. All Rights Reserved.

2025

Extensible Data Ingestion System for Industry 4.0

Authors
Oliveira, B; Oliveira, Ó; Peixoto, T; Ribeiro, F; Pereira, C;

Publication
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)

Abstract
Industry 4.0 promotes a paradigm shift in the orchestration, oversight, and optimization of value chains across product and service life cycles. For instance, leveraging large-scale data from sensors and devices, coupled with Machine Learning techniques can enhance decision-making and facilitate various improvements in industrial settings, including predictive maintenance. However, ensuring data quality remains a significant challenge. Malfunctions in sensors or external factors such as electromagnetic interference have the potential to compromise data accuracy, thereby undermining confidence in related systems. Neglecting data quality not only compromises system outputs but also contributes to the proliferation of bad data, such as data duplication, inconsistencies, or inaccuracies. To consider these problems is crucial to fully explore the potential of data in Industry 4.0. This paper introduces an extensible system designed to ingest, organize, and monitor data generated by various sources, focusing on industrial settings. This system can serve as a foundation for enhancing intelligent processes and optimizing operations in smart manufacturing environments. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2025.

2025

A production quality monitoring approach based on a condition index: an application on the glass container industry

Authors
Oliveira, MA; Guimaraes, L; Borges, JL; Almada Lobo, B;

Publication
INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH

Abstract
Ensuring process quality in modern manufacturing is increasingly challenging due to the complexity of production processes and reliance on skilled operators, which can lead to suboptimal solutions and poor quality. To address these challenges, we introduce a novel, unsupervised, robust, nonparametric control chart for Phase II monitoring. This chart tracks the degradation of a quality characteristic using a condition index that captures mean and scale shifts without relying on assumptions, offering high flexibility and adaptability. Comparative studies with state-of-the-art nonparametric schemes demonstrate faster detection capabilities and competitive accuracy across various scenarios. We validate our approach through its application in the glass container production process, showcasing its effectiveness in monitoring multiple defective rates. Although tested on defective rates, the methodology is adaptable to any quantifiable quality characteristic.

2025

Metabolic mapping for precision grape maturation: Application of a tomography-like method for site-specific management

Authors
Tosin, R; Rodrigues, L; Santos-Campos, M; Gonçalves, I; Barbosa, C; Santos, F; Martins, R; Cunha, M;

Publication
SMART AGRICULTURAL TECHNOLOGY

Abstract
This study demonstrates the application of a tomography-like (TL) method to monitor grape maturation dynamics over two growing seasons (2021-2022) in the Douro Wine Region. Using a Vis-NIR point-of-measurement sensor, which employs visible and near-infrared light to penetrate grape tissues non-destructively and provide spectral data to predict internal composition, this approach captures non-destructive measurements of key physicochemical properties, including soluble solids content (SSC), weight-to-volume ratio, chlorophyll and anthocyanin levels across internal grape tissues-skin, pulp, and seeds-over six post-veraison stages. The collected data were used to generate detailed metabolic maps of maturation, integrating topographical factors such as altitude and NDVI-based (normalised difference vegetation index) vigour assessments, which revealed significant (p < 0.05) variations in SSC, chlorophyll, and anthocyanin levels across vineyard zones. The metabolic maps generated from the TL method enable high-throughput data to reveal the impact of environmental variability on grape maturation across distinct vineyard areas. Predictive models using random forest (RF) and self-learning artificial intelligence (SL-AI) algorithms showed RF's robustness, achieving stable predictions with R-2 >= 0.86 and MAPE <= 33.83 %. To illustrate the TL method's practical value, three hypothetical decision models were developed for targeted winemaking objectives based on SSC, chlorophyll in the pulp, and anthocyanin in the skin and seeds. These models underscore the TL method's ability to support site-specific management (SSM) by providing actionable agricultural practices (e.g. harvest) into vineyard management, guiding winemakers to implement tailored interventions based on metabolic profiles rather than only cultivar characteristics. This precision viticulture (PV) approach enhances wine quality and production efficiency by aligning vineyard practices with specific wine quality goals.

2025

Pulmonary Hypertension Detection from Heart Sound Analysis

Authors
Gaudio, A; Giordano, N; Elhilali, M; Schmidt, S; Renna, F;

Publication
IEEE Transactions on Biomedical Engineering

Abstract

2025

Metaverse branding: A review and future directions

Authors
Barbosa, B;

Publication
Strategic Brand Management in the Age of AI and Disruption

Abstract
The main aims of this chapter were to explore metaverse branding by identifying the main trends and contributions in extant literature. Through a bibliometry and the critical analysis of the main contributions in the literature, the chapter proposes a metaverse branding conceptualization, which shows how immersive metaverse experiences that provide multi- dimensional value enhance brand engagement, which leads to increased brand awareness, brand love, satisfaction, trust, and brand equity. These factors ultimately drive online and offline purchases and strengthen brand loyalty. Overall, this chapter and the proposed framework provide relevant insights for both managers defining metaverse branding strategies, and researchers interested in these topics. © 2025, IGI Global Scientific Publishing. All rights reserved.

  • 45
  • 4143