Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

2025

Post-stroke upper limb rehabilitation: clinical practices, compensatory movements, assessment, and trends

Authors
Rocha, CD; Carneiro, I; Torres, M; Oliveira, HP; Pires, EJS; Silva, MF;

Publication
PROGRESS IN BIOMEDICAL ENGINEERING

Abstract
Stroke, a vascular disorder affecting the nervous system, is the third-leading cause of death and disability combined worldwide. One in every four people aged 25 and older will face the consequences of this condition, which typically causes loss of limb function, among other disabilities. The proposed review analyzes the mechanisms of stroke and their influence on the disease outcome, highlighting the critical role of rehabilitation in promoting recovery of the upper limb (UL) and enhancing the quality of life of stroke survivors. Common outcome measures and the specific targeted UL features are described, along with emerging supplementary therapies found in the literature. Stroke survivors often develop compensatory strategies to cope with limitations in UL function, which must be detected and corrected during rehabilitation to facilitate long-term recovery. Recent research on the automated detection of compensatory movements has explored pressure, wearable, marker-based motion capture systems, and vision sensors. Although current approaches have certain limitations, they establish a strong foundation for future innovations in post-stroke UL rehabilitation, promoting a more effective recovery.

2025

Enhancing Weakly-Supervised Video Anomaly Detection With Temporal Constraints

Authors
Caetano, F; Carvalho, P; Mastralexi, C; Cardoso, JS;

Publication
IEEE ACCESS

Abstract
Anomaly Detection has been a significant field in Machine Learning since it began gaining traction. In the context of Computer Vision, the increased interest is notorious as it enables the development of video processing models for different tasks without the need for a cumbersome effort with the annotation of possible events, that may be under represented. From the predominant strategies, weakly and semi-supervised, the former has demonstrated potential to achieve a higher score in its analysis, adding to its flexibility. This work shows that using temporal ranking constraints for Multiple Instance Learning can increase the performance of these models, allowing the focus on the most informative instances. Moreover, the results suggest that altering the ranking process to include information about adjacent instances generates best-performing models.

2025

Acceptance Test Generation with Large Language Models: An Industrial Case Study

Authors
Ferreira, M; Viegas, L; Faria, JP; Lima, B;

Publication
IEEE/ACM International Conference on Automation of Software Test, AST@ICSE 2025, Ottawa, ON, Canada, April 28-29, 2025

Abstract
Large language model (LLM)-powered assistants are increasingly used for generating program code and unit tests, but their application in acceptance testing remains underexplored. To help address this gap, this paper explores the use of LLMs for generating executable acceptance tests for web applications through a two-step process: (i) generating acceptance test scenarios in natural language (in Gherkin) from user stories, and (ii) converting these scenarios into executable test scripts (in Cypress), knowing the HTML code of the pages under test. This two-step approach supports acceptance test-driven development, enhances tester control, and improves test quality. The two steps were implemented in the AutoUAT and Test Flow tools, respectively, powered by GPT-4 Turbo, and integrated into a partner company's workflow and evaluated on real-world projects. The users found the acceptance test scenarios generated by AutoUAT helpful 95% of the time, even revealing previously overlooked cases. Regarding Test Flow, 92% of the acceptance test cases generated by Test Flow were considered helpful: 60% were usable as generated, 8% required minor fixes, and 24% needed to be regenerated with additional inputs; the remaining 8% were discarded due to major issues. These results suggest that LLMs can, in fact, help improve the acceptance test process, with appropriate tooling and supervision. © 2025 Elsevier B.V., All rights reserved.

2025

A systematic review of mathematical programming models and solution approaches for the textile supply chain

Authors
Alves, GA; Tavares, R; Amorim, P; Camargo, VCB;

Publication
COMPUTERS & INDUSTRIAL ENGINEERING

Abstract
The textile industry is a complex and dynamic system where structured decision-making processes are essential for efficient supply chain management. In this context, mathematical programming models offer a powerful tool for modeling and optimizing the textile supply chain. This systematic review explores the application of mathematical programming models, including linear programming, nonlinear programming, stochastic programming, robust optimization, fuzzy programming, and multi-objective programming, in optimizing the textile supply chain. The review categorizes and analyzes 163 studies across the textile manufacturing stages, from fiber production to integrated supply chains. Key results reveal the utility of these models in solving a wide range of decision-making problems, such as blending fibers, production planning, scheduling orders, cutting patterns, transportation optimization, network design, and supplier selection, considering the challenges found in the textile sector. Analyzing those models, we point out that sustainability considerations, such as environmental and social aspects, remain underexplored and present significant opportunities for future research. In addition, this study emphasizes the importance of incorporating multi-objective approaches and addressing uncertainties in decision-making to advance sustainable and efficient textile supply chain management.

2025

ECG Biometrics

Authors
Pinto, JR; Cardoso, S;

Publication
Encyclopedia of Cryptography, Security and Privacy, Third Edition

Abstract
[No abstract available]

2025

Boosting Governance-Centric Digital Product Passports Through Traceability in Footwear Industry

Authors
Moço, H; Sousa, C; Ferreira, R; Pinto, P; Pereira, C; Diogo, R;

Publication
INNOVATIVE INTELLIGENT INDUSTRIAL PRODUCTION AND LOGISTICS, IN4PL 2024, PT II

Abstract
Since supply chains have become complex and tracking a product's journey, from raw materials to the end of it's life has become more difficult. Consumers are demanding greater transparency about the materials origins and environmental impact of the products they buy. These new requirements, togeher with European Commission Green Deal strategy, lead to the concept of digital product passport (DPP). DPP could be seen as an instrument to boost circularity, however the DPP architecture and governance model still undefined and unclear. Data Governance in the context of the DPP acts as the backbone for ensuring accurate and reliable data within these passports or data models, leading to flawless traceability. This article approaches the DPPs and it's governance challenges, explaining how they function as digital repositories for a product's life cycle information and the concept of Data Governance. By understanding how these two concepts work together, we will explore a short use case within the footwear industry to show how DPP governance architecture might work in a distributed environment.

  • 42
  • 4212