Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

2023

Classification and Data Science in the Digital Age

Authors
Brito, P; Dias, JG; Lausen, B; Montanari, A; Nugent, R;

Publication
Studies in Classification, Data Analysis, and Knowledge Organization

Abstract

2023

Benchmarking deep learning models and hyperparameters for bridge defects classification

Authors
Shahrabadi, S; Gonzalez, D; Sousaa, N; Adao, T; Peres, E; Magalhaes, L;

Publication
Procedia Computer Science

Abstract

2023

Evaluating Rotation Invariant Strategies for Mitosis Detection Through YOLO Algorithms

Authors
Gonzalez, DG; Carias, J; Castilla, YC; Rodrigues, J; Adão, T; Jesus, R; Magalhães, LGM; de Sousa, VML; Carvalho, L; Almeida, R; Cunha, A;

Publication
Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, LNICST

Abstract
Cancer diagnosis is of major importance in the field of human medical pathology, wherein a cell division process known as mitosis constitutes a relevant biological pattern analyzed by professional experts, who seek for such occurrence in presence and number through visual observation of microscopic imagery. This is a time-consuming and exhausting task that can benefit from modern artificial intelligence approaches, namely those handling object detection through deep learning, from which YOLO can be highlighted as one of the most successful, and, as such, a good candidate for performing automatic mitoses detection. Considering that low sensibility for rotation/flip variations is of high importance to ensure mitosis deep detection robustness, in this work, we propose an offline augmentation procedure focusing rotation operations, to address the impact of lost/clipped mitoses induced by online augmentation. YOLOv4 and YOLOv5 were compared, using an augmented test dataset with an exhaustive set of rotation angles, to investigate their performance. YOLOv5 with a mixture of offline and online rotation augmentation methods presented the best averaged F1-score results over three runs. © 2023, ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering.

2023

Novel Real-time Metrics for Quantified Vineyard Workers' Operations with Wearable Devices

Authors
Arrais, A; Dias, D; Cunha, JPS;

Publication
2023 IEEE 7TH PORTUGUESE MEETING ON BIOENGINEERING, ENBENG

Abstract
Agriculture work is physically demanding and the sector workers have a high incidence of musculoskeletal disorders. The shift to Agriculture 5.0 and the advancement of precision agriculture have involved the digitalization of this industry, but tend to marginalise the workers, though they are still essential to more thorough tasks that cannot be automated. In order to tackle the necessity to support the monitoring of agriculture workers, we developed quantification algorithms, incorporated in a mobile application, which calculate metrics based on the signals gathered by wearable sensors. Our proximity to the Douro region lead us to focus on metrics that could be more meaningful for viniculture, namely the quantification of trunk inclinations and shear cuts, very common in this production. The developed algorithms showed an error of 1.36 degrees for the calculus of inclination and 2.43 cuts for the prediction of cuts when tested with on-field data. These results suggest that the created system has the viability to be used by agricultures and give reliable feedback on their workers.

2023

TRIDENT - Technology based impact assessment tool foR sustaInable, transparent Deep sEa miNing exploraTion and exploitation: A project overview

Authors
Silva, E; Viegas, D; Martins, A; Almeida, J; Almeida, C; Neves, B; Madureira, P; Wheeler, AJ; Salavasidis, G; Phillips, A; Schaap, A; Murton, B; Berry, A; Weir, A; Dooly, G; Omerdic, E; Toal, D; Collins, PC; Miranda, M; Petrioli, C; Rodríguez, CB; Demoor, D; Drouet, C; El Serafy, G; Jesus, SM; Dañobeitia, J; Tegas, V; Cusi, S; Lopes, L; Bodo, B; Beguery, L; VanDam, S; Dumortier, J; Neves, L; Srivastava, V; Dahlgren, TG; Hestetun, JT; Eiras, R; Caldeira, R; Rossi, C; Spearman, J; Somoza, L; González, FJ; Bartolomé, R; Bahurel, P;

Publication
OCEANS 2023 - LIMERICK

Abstract
By creating a dependable, transparent, and cost-effective system for forecasting and ongoing environmental impact monitoring of exploration and exploitation activities in the deep sea, TRIDENT seeks to contribute to the sustainable exploitation of seabed mineral resources. In order to operate autonomously in remote locations under harsh conditions and send real-time data to authorities in charge of granting licenses and providing oversight, this system will create and integrate new technology and innovative solutions. The efficient monitoring and inspection system that will be created will abide by national and international legal frameworks. At the sea surface, mid-water, and the bottom, TRIDENT will identify all pertinent physical, chemical, geological, and biological characteristics that must be monitored. It will also look for data gaps and suggest procedures for addressing them. These are crucial actions to take in order to produce accurate indicators of excellent environmental status, statistically robust environmental baselines, and thresholds for significant impact, allowing for the standardization of methods and tools. In order to monitor environmental parameters on mining and reference areas at representative spatial and temporal scales, the project consortium will thereafter develop and test an integrated system of stationary and mobile observatory platforms outfitted with the most recent automatic sensors and samplers. The system will incorporate high-capacity data processing pipelines able to gather, transmit, process, and display monitoring data in close to real-time to facilitate prompt actions for preventing major harm to the environment. Last but not least, it will offer systemic and technological solutions for predicting probable impacts of applying the developed monitoring and mitigation techniques.

2023

Decision making and martial arts

Authors
Ferreira, JS;

Publication
International Journal of Operational Research

Abstract
Martial arts (MAs) are a global training system that goes far beyond physical preparation and self-defence. They have been known for a long time, and their wisdom and impact are impressive. The paper illustrates matters about MAs which are relevant to decision making (DM). The recognition of the limitations of the sole dependence on physical ability (hard approaches) is a breakthrough in MAs. The pillars of body and technique are not enough to reach a global vision and overcome severe problems. MAs are committed to mastering faculties linked to intuition, emotions, and thought-free operations, signifying the pillar mind. These revelations have insightful implications for DM and the promptness in approaching the growing complexity of decision problems. Special attention is devoted to the mind, representing a soft paradigm, emphasising the human dimension, integrating intuition and complying with ethics. Finally, the paper delineates a MAs way to improve DM as science and art. © 2023 Inderscience Enterprises Ltd.. All rights reserved.

  • 377
  • 4212