2023
Authors
Yazdani-Asrami, M; Song, WJ; Morandi, A; De Carne, G; Murta-Pina, J; Pronto, A; Oliveira, R; Grilli, F; Pardo, E; Parizh, M; Shen, BY; Coombs, T; Salmi, T; Wu, D; Coatanea, E; Moseley, DA; Badcock, RA; Zhang, MJ; Marinozzi, V; Tran, N; Wielgosz, M; Skoczen, A; Tzelepis, D; Meliopoulos, S; Vilhena, N; Sotelo, G; Jiang, ZA; Grosse, V; Bagni, T; Mauro, D; Senatore, C; Mankevich, A; Amelichev, V; Samoilenkov, S; Yoon, TL; Wang, Y; Camata, RP; Chen, CC; Madureira, AM; Abraham, A;
Publication
SUPERCONDUCTOR SCIENCE & TECHNOLOGY
Abstract
This paper presents a roadmap to the application of AI techniques and big data (BD) for different modelling, design, monitoring, manufacturing and operation purposes of different superconducting applications. To help superconductivity researchers, engineers, and manufacturers understand the viability of using AI and BD techniques as future solutions for challenges in superconductivity, a series of short articles are presented to outline some of the potential applications and solutions. These potential futuristic routes and their materials/technologies are considered for a 10-20 yr time-frame.
2023
Authors
Alonso, O; Cousijn, H; Silvello, G; Marrero, M; Teixeira Lopes, C; Marchesin, S;
Publication
Lecture Notes in Computer Science
Abstract
2023
Authors
Silva, V; Amaral, A; Fontes, T;
Publication
SMART ENERGY FOR SMART TRANSPORT, CSUM2022
Abstract
Globalization and the COVID-19 pandemic led to an increased number of consumers using e-commerce services. This trend has been raising the demand for logistic activities, especially on the last-mile. This part of the supply chain is expensive and ineffective, and a source of negative externalities such as air and noise pollution, traffic congestion and accidents. The anticipation of innovative solutions can help to mitigate these costs. In this context, this paper provides a systematic literature review of the existing literature regarding emerging solutions for last-mile parcel delivery. For guiding the development of more sustainable last-mile parcel distribution, and to provide some insights for future research, we identified and summarized the emerging concepts within this field domain. The results show that innovative solutions have been emerging at different levels: (i) definition of new crowdsourcing-based models, (ii) use of new types of vehicles, and (iii) development of optimization systems based on data collection and the combination of different technologies. Moreover, recent studies show that new strategies are being developed focusing on using consumers as active actors of delivery; non-road and autonomous vehicles are promising concepts in last-mile operations; and different logistic operations, such as vehicle routing, are being optimized with data analytics, cloud technology and mobile apps.
2023
Authors
Oliveira, JPF; Fontes, T; Galvao, T;
Publication
SMART ENERGY FOR SMART TRANSPORT, CSUM2022
Abstract
By 2050, and in the context of decarbonization and carbon neutrality, many companies worldwide are looking for low-carbon alternatives. Transport companies are probably the most challenging due to the continuing growth in global demand and the high dependency on fossil fuels. Some alternatives are emerging to replace conventional diesel vehicles and thus reduce greenhouse gas emissions and air pollutants. One of these alternatives is the adoption of compressed natural gas (CNG). In this paper, we provide a detailed study of the current emissions from the largest bus fleet company in the metropolitan area of Oporto. For this analysis, we used a top-down and a bottom-up methodology based on EMEP/EEA guidebook to compute the CO2 and air pollution (CO, NMVOC, PM2.5, and NOx) emissions from the fleet. Fuel consumption, energy consumption, vehicle slaughter, electric bus incorporation, and the investments made were taken into consideration in the analyses. From the case study, the overall reduction in CO2 emission was just 6.3%, and the emission factors (air pollutants) from CNG-powered buses and diesel-powered buses are closer and closer. For confirming these results and question the effectiveness of the fleet transitions from diesel to CNG vehicles, we analysed two scenarios. The obtained results reveal the potential and effectiveness of electric buses and other fuel alternatives to reduce CO2 and air pollution.
2023
Authors
Andrade, L; Camacho, R; Oliveira, J;
Publication
2023 13TH INTERNATIONAL CONFERENCE ON BIOSCIENCE, BIOCHEMISTRY AND BIOINFORMATICS, ICBBB 2023
Abstract
As the major cause of deaths worldwide, cardiovascular diseases are responsible for about 17.9 million deaths per year 1. Research on new technologies and methodologies allowed the acquisition of reliable data in several high income countries, however, in various developing countries, due to poverty and common scarcity of resources, this has not been reached yet. In this work, cardiovascular data acquired using cardiac auscultation is going to be used to detect cardiac murmurs through an innovative deep learning approach. The proposed screening algorithm was built using pre-trained models comprising Residual Neural Networks, namely Resnet50, and Visual Geometry Groups, such as VGG16 and VGG19. Furthermore, and up to our knowledge, our proposal is the first one that characterizes heart murmurs based on their frequency components, i.e. the murmur pitch. Such analysis may be used to augment the system's capability on detecting heart diseases. A novel decision-making function was also proposed regarding the murmur's pitch. From our experiments, low-pitch murmurs were more difficult to detect, with final f1-score values nearing the 0.40 value mark for all three models, while high-pitch murmurs presented an higher f1-score value of about 0.80. This might be due to the fact that the low-pitch share their respective frequency range with the normal and fundamental heart sounds, therefore making it harder for the model to correctly detect their presence whereas high-pitch murmurs' frequencies distance from the latter.
2023
Authors
Piardi, L; Costa, P; Oliveira, A; Leitao, P;
Publication
IFAC PAPERSONLINE
Abstract
This paper presents an approach for a multi-agent-based cyber-physical system dedicated to operating the warehouse plant with a distributed approach. The recent technological evolution has improved the quality and robustness of the services for current warehouses. However, systems that operate warehouses do not follow this evolution, presenting predominantly central monolithic or hierarchical approaches, resulting in fragility related to flexibility, scalability, and robustness in the face of disturbances. In the proposed approach, each warehouse physical component has a computational unit associated, i.e. a cyber agent, with communication, negotiation, and data analysis capabilities. Agents contain all the information, algorithms, and functions necessary to operate the physical component, and instead of receiving orders from higher-layer agents, they negotiate and collaborate to perform the tasks. The proposed system was tested in a laboratory testbed, composed of six racks and up to eight robots for transporting products. Extensive experiments show the feasibility of the approach. Copyright (c) 2023 The Authors.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.