2023
Authors
Silva, J; Sumaili, J; Silva, B; Carvalho, L; Retorta, F; Staudt, M; Miranda, V;
Publication
IEEE TRANSACTIONS ON POWER SYSTEMS
Abstract
This paper presents a methodology to estimate flexibility existing on TSO-DSO borderline, for the cases where multiple TSO-DSO connections exist (meshed grids). To do so, the work conducted exploits previous developments regarding flexibility representation through the adoption of active and reactive power flexibility maps and extends the concept for the cases where multiple TSO-DSO connection exists, using data-driven approach to determine the equivalent impedance between TSO nodes, preserving the anonymity regarding sensitive grid information, such as the topology. This paper also provides numerical validation followed by real-world demonstration of the methodology proposed.
2023
Authors
Muhammad, SH; Brazdil, P; Jorge, A;
Publication
Compendium of Neurosymbolic Artificial Intelligence
Abstract
Deep learning approaches have become popular in sentiment analysis because of their competitive performance. The downside of this approach is that they do not provide understandable explanations on how the sentiment values are calculated. Previous approaches that used sentiment lexicons for sentiment analysis can do that, but their performance is lower than deep learning approaches. Therefore, it is natural to wonder if the two approaches can be combined to exploit their advantages. In this chapter, we present a neuro-symbolic approach that combines both symbolic and deep learning approaches for sentiment analysis tasks. The symbolic approach exploits sentiment lexicon and shifter patterns-which cover the operations of inversion/reversal, intensification, and attenuation/downtoning. The deep learning approach used a pre-trained language model (PLM) to construct sentiment lexicon. Our experimental result shows that the proposed approach leads to promising results, substantially better than the results of a pure lexicon-based approach. Although the results did not reach the level of the deep learning approach, a great advantage is that sentiment prediction can be accompanied by understandable explanations. For some users, it is very important to see how sentiment is derived, even if performance is a little lower. © 2023 The authors and IOS Press. All rights reserved.
2023
Authors
Pedrosa, J; Silva, R; Santos, C; Nunes, F; Mancio, J; Renna, F; Fontes Carvalho, R;
Publication
European Heart Journal - Cardiovascular Imaging
Abstract
2023
Authors
da Silva, CT; Dias, BMD; Araujo, RE; Pellini, EL; Lagana, AAM;
Publication
ENERGIES
Abstract
Storing energy efficiently is one of the main factors of a more sustainable world. The battey management system in energy storage plays an extremely important role in ensuring these systems' efficiency, safety, and performance. This battery management system is capable of estimating the battery states, which are used to give better efficiency, a long life cycle, and safety. However, these states cannot be measured directly and must be estimated indirectly using battery models. Therefore, accurate battery models are essential for battery management systems implementation. One of these models is the nonlinear grey box model, which is easy to implement in embedded systems and has good accuracy when used with a good parameter identification method. Regarding the parameter identification methods, the nonlinear least square optimization is the most used method. However, to have accurate results, it is necessary to define the system's initial states, which is not an easy task. This paper presents a two-outputs nonlinear grey box battery model. The first output is the battery voltage, and the second output is the battery state of charge. The second output was added to improve the system's initial states identification and consequently improve the identified parameter accuracy. The model was estimated with the best experiment design, which was defined considering a comparison between seven different experiment designs regarding the fit to validation data, the parameter standard deviation, and the output variance. This paper also presents a method for defining a weight between the outputs, considering a greater weight in the output with greater model confidence. With this approach, it was possible to reach a value 1000 times smaller in the parameter standard deviation with a non-biased and little model prediction error when compared to the commonly used one-output nonlinear grey box model.
2023
Authors
Goncalves, CF; Cruz, NA; Ferreira, BM;
Publication
2023 IEEE UNDERWATER TECHNOLOGY, UT
Abstract
This paper describes a robotic system to detect and estimate the volume of sediments in underwater wall corners, in scenarios with zero visibility. All detection and positioning is based on data from a scanning sonar. The main idea is to scan the walls and the bottom of the structure to detect the corner, and then use data obtained in the direction of the corner to estimate the presence of sediment accumulation and its volume. Our approach implements an image segmentation to extract range from the surfaces of interest. The resulting data is then employed for relative localization and estimate of the sediment accumulation. The paper provides information about the methodologies developed and data from practical experiments.
2023
Authors
Brito, J; Goloubentsev, A; Goncharov, E;
Publication
JOURNAL OF COMPUTATIONAL FINANCE
Abstract
In this paper we explain how to compute gradients of functions of the form G = 1/2 Sigma(m)(i=1) (Ey(i) - C-i )(2), which often appear in the calibration of stochastic models, using automatic adjoint differentiation and parallelization. We expand on the work of Goloubentsev and Lakshtanov and give approaches that are faster and easier to implement. We also provide an implementation of our methods and apply the technique to calibrate European options.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.