2024
Authors
Bauer, Y; Leal, JP; Queirós, R;
Publication
5th International Computer Programming Education Conference, ICPEC 2024, June 27-28, 2024, Lisbon, Portugal
Abstract
Generative AI presents both challenges and opportunities for educators. This paper explores its potential for automating the creation of programming exercises designed for automated assessment. Traditionally, creating these exercises is a time-intensive and error-prone task that involves developing exercise statements, solutions, and test cases. This ongoing research analyzes the capabilities of the OpenAI GPT API to automatically create these components. An experiment using the OpenAI GPT API to automatically create 120 programming exercises produced interesting results, such as the difficulties encountered in generating valid JSON formats and creating matching test cases for solution code. Learning from this experiment, an enhanced feature was developed to assist teachers in creating programming exercises and was integrated into Agni, a virtual learning environment (VLE). Despite the challenges in generating entirely correct programming exercises, this approach shows potential for reducing the time required to create exercises, thus significantly aiding teachers. The evaluation of this approach, comparing the efficiency and usefulness of using the OpenAI GPT API or authoring the exercises oneself, is in progress. © Yannik Bauer, José Paulo Leal, and Ricardo Queirós;
2024
Authors
Martins, JJ; Amaral, A; Dias, A;
Publication
2024 7TH IBERIAN ROBOTICS CONFERENCE, ROBOT 2024
Abstract
Unmanned Aerial Vehicle (UAV) applications, particularly for indoor tasks such as inventory management, infrastructure inspection, and emergency response, are becoming increasingly complex with dynamic environments and their different elements. During operation, the vehicle's response depends on various decisions regarding its surroundings and the task goal. Reinforcement Learning techniques can solve this decision problem by helping build more reactive, adaptive, and efficient navigation operations. This paper presents a framework to simulate the navigation of a UAV in an operational environment, training and testing it with reinforcement learning models for further deployment in the real drone. With the support of the 3D simulator Gazebo and the framework Robot Operating System (ROS), we developed a training environment conceivably simple and fast or more complex and dynamic, explicit as the real-world scenario. The multi-environment simulation runs in parallel with the Deep Reinforcement Learning (DRL) algorithm to provide feedback for the training. TD3, DDPG, PPO, and PPO+LSTM were trained to validate the framework training, testing, and deployment in an indoor scenario.
2024
Authors
Geraldes, CAS; Setti, FK; Almeida, JP;
Publication
FLEXIBLE AUTOMATION AND INTELLIGENT MANUFACTURING: ESTABLISHING BRIDGES FOR MORE SUSTAINABLE MANUFACTURING SYSTEMS, FAIM 2023, VOL 2
Abstract
The present study brings forward a simulation-based study of the production process of a Portuguese bakery. The main goal is to analyse different production processes and propose improvements, through the use of discrete event simulation. A relevant set of data was collected, and four productive processes were selected to be modelled using Simio software (Simulation Modelling based on Intelligent Objects). The analysis of the developed models highlighted the need for improvements and different scenarios were created to this purpose. Among the obtained results, it was found that the adoption of mixed production scenarios allowed the increase of the production level while maintaining the current existing resources. In conclusion, this study highlighted the ability of the simulation technique to analyse manufacturing processes, throughout the creation of different scenarios, providing insights on the production process optimising the companies' productive performance.
2024
Authors
Aly, L; Godinho, L; Bota, P; Bernardes, G; da Silva, HP;
Publication
SCIENTIFIC DATA
Abstract
Emotions encompass physiological systems that can be assessed through biosignals like electromyography and electrocardiography. Prior investigations in emotion recognition have primarily focused on general population samples, overlooking the specific context of theatre actors who possess exceptional abilities in conveying emotions to an audience, namely acting emotions. We conducted a study involving 11 professional actors to collect physiological data for acting emotions to investigate the correlation between biosignals and emotion expression. Our contribution is the DECEiVeR (DatasEt aCting Emotions Valence aRousal) dataset, a comprehensive collection of various physiological recordings meticulously curated to facilitate the recognition of a set of five emotions. Moreover, we conduct a preliminary analysis on modeling the recognition of acting emotions from raw, low- and mid-level temporal and spectral data and the reliability of physiological data across time. Our dataset aims to leverage a deeper understanding of the intricate interplay between biosignals and emotional expression. It provides valuable insights into acting emotion recognition and affective computing by exposing the degree to which biosignals capture emotions elicited from inner stimuli.
2024
Authors
Ukil, A; Majumdar, A; Jara, AJ; Gama, J;
Publication
2024 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING WORKSHOPS, ICASSPW 2024
Abstract
Deep neural networks (DNN) are used to analyze images, videos, signals and texts require a lot of memory and intensive computing power. For example, the very successful GPT4 model contains more than a few trillion parameters. Although such models are of great impact, but they have been used very little in real-world applications, including industrial Internet of Things, self-driving cars, algorithmic health monitoring for use in limited mobile or edge devices. The requirement to run large models on resource-constrained peripherals has led to significant research interest in compressing DNN models. Signal processing researchers have traditionally advocated data (image/video/audio) compression, and by the way, many of these techniques are used for DNN compression. For example, source coding is a basic technique that has been widely used to compress various DNN models. In this paper, we present our views on the use of signal processing methods for DNN model compression.
2024
Authors
De Jesus, G; Nunes, S;
Publication
3rd Annual Meeting of the ELRA-ISCA Special Interest Group on Under-Resourced Languages, SIGUL 2024 at LREC-COLING 2024 - Workshop Proceedings
Abstract
This paper introduces Labadain-30k+, a monolingual dataset comprising 33.6k documents in Tetun, a low-resource language spoken in Timor-Leste. The dataset was acquired through web crawling and augmented with Wikipedia documents released by Wikimedia. Both sets of documents underwent thorough manual audits at the document level by native Tetun speakers, resulting in the construction of a Tetun text dataset well-suited for a variety of natural language processing and information retrieval tasks. This dataset was employed to conduct a comprehensive content analysis aimed at providing a nuanced understanding of document composition and the evolution of Tetun documents on the web. The analysis revealed that news articles constitute the predominant documents within the dataset, accounting for 89.87% of the total, followed by Wikipedia documents at 4.34%, and legal and governmental documents at 3.65%, among others. Notably, there was a substantial increase in the number of documents in 2020, indicating 11.75 percentage points rise in document quantity, compared to an average of 4.76 percentage points per year from 2001 to 2023. Moreover, the year 2017, marked by the increased popularity of online news in Tetun, served as a threshold for analyzing the evolution of document writing on the web pre- and post-2017, specifically regarding vocabulary usage. Surprisingly, this analysis showed a significant increase of 6.12 percentage points in the Tetun written adhering to the Tetun official standard. Additionally, the persistence of Portuguese loanwords in that trajectory remained evident, reflecting an increase of 5.09 percentage points. © 2024 ELRA Language Resource Association.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.