2024
Authors
Ferreira, A; Santos, V; Oliveira, M;
Publication
2024 IEEE WORKSHOP ON SIGNAL PROCESSING SYSTEMS, SIPS
Abstract
The phase response of all-pole (AP) models is known to be non-linear and highly dependent on the frequency response magnitude. The objective and perceptual impact of the group delay of AP models in the synthesis of vowel sounds has not been thoroughly addressed in the literature. In this paper, we use a dedicated frequency-domain framework so as to i) synthesize a plausible glottal excitation setting the ground-truth for the harmonic phase structure and replicating the fundamental frequency contour of natural vowels, ii) synthesize realistic vowel sounds through all-zero (AZ) and all-pole (AP) models sharing the same frequency response magnitude, and iii) assess the objective and perceptual impact of the group delay of AP models taking as a reference natural vowels and, in particular, the ground-truth harmonic phase structure of the glottal excitation. Our findings emphasize that the non-linear phase characteristics of AP models degrade the harmonic phase structure of synthetic vowels significantly beyond what is found in natural vowels, however, that is not always clearly audible.
2024
Authors
Dias, A; Mucha, A; Santos, T; Oliveira, A; Amaral, G; Ferreira, H; Martins, A; Almeida, J; Silva, E;
Publication
JOURNAL OF MARINE SCIENCE AND ENGINEERING
Abstract
This paper presents the implementation of an innovative solution based on heterogeneous autonomous vehicles to tackle maritime pollution (in particular, oil spills). This solution is based on native microbial consortia with bioremediation capacity, and the adaptation of air and surface autonomous vehicles for in situ release of autochthonous microorganisms (bioaugmentation) and nutrients (biostimulation). By doing so, these systems can be applied as the first line of the response to pollution incidents from several origins that may occur inside ports, around industrial and extraction facilities, or in the open sea during transport activities in a fast, efficient, and low-cost way. The paper describes the work done in the development of a team of autonomous vehicles able to carry as payload, native organisms to naturally degrade oil spills (avoiding the introduction of additional chemical or biological additives), and the development of a multi-robot framework for efficient oil spill mitigation. Field tests have been performed in Portugal and Spain's harbors, with a simulated oil spill, and the coordinate oil spill task between the autonomous surface vehicle (ASV) ROAZ and the unmanned aerial vehicle (UAV) STORK has been validated.
2024
Authors
Luis Jesus; Sara Castilho; Aníbal JS Ferreira; Maria Conceição Costa;
Publication
ISSP 2024 - 13th International Seminar on Speech Production
Abstract
2024
Authors
Pinheiro, CR; Guerreiro, SL; Mamede, HS;
Publication
ENTERPRISE INFORMATION SYSTEMS, ICEIS 2023, PT II
Abstract
Enterprise Architecture (EA) is a coherent set of principles, methods, and models that express the structure and behavior of an enterprise and its IT landscape. EA mining uses data mining techniques to automate EA models' extraction. Ontologies help to define concepts and the relationships among these concepts to describe a domain of interest. This paper presents an extensible ontology for EA mining to extract models using Application Program Interface (API) log files as the data source. The ontology development follows the FAIR principles (Findability, Accessibility, Interoperability, and Reusability) and uses OntoUML 2.0 language to ensure its expressiveness and readability. To validate its theoretical feasibility and contribution to EA modeling, it presents a simulation of the ontology application through a controlled scenario using data structures similar to an industrial case. Then, the ontology is verified and validated, checking quality ontology criteria using specialized tools for syntactic and semantic model checking, which also aids in avoiding ontology anti-patterns.
2024
Authors
Capela, D; Lopesa, T; Ferreira, MFS; Magalhaes, P; Jorge, PAS; Silva, NA; Guimaraes, D;
Publication
OPTICAL SENSING AND DETECTION VIII
Abstract
Circular economy policies and recycling play a pivotal role in fostering sustainable models for the wood industry capable of reducing the environmental impact of our consumption patterns. The production of Particleboard is a good example of industry that uses high quantities of recycled wood. However, it poses risks since wood often have contaminants that compromise compliance of safety standards. Thus, it is necessary to develop methodologies for rapid analysis of chemical contaminants in wood wastes that allow easy detection of these elements. In this work, the capability of Laser-induced breakdown spectroscopy (LIBS) to detect a set of heavy metals in wood samples was explored. Some advantages of this technique, such as portability, minimal to no sample preparation, and quick analysis are characteristics that make this method one of the most suitable for this purpose of analysis. In the majority of cases, the contamination comes from the pigments used in paints, varnishes, or coatings. Titanium (Ti) e.g. is a common element in white pigments and Chromium (Cr) in red and green pigments. To ensure the presence or absence of Cr and Ti, a set of 3 lines was analysed. The results revealed the presence of these elements and that 30% of the samples seem to be highly contaminated. The LIBS technique proved to be a powerful methodogy for decision-making purposes.
2024
Authors
Robalinho, P; Rodrigues, A; Novais, S; Ribeiro, ABL; Silva, S; Frazao, O;
Publication
EOS ANNUAL MEETING, EOSAM 2024
Abstract
This work proposes a signal processing algorithm to analyse the optical signal from a Low Coherence Interferometric (LCI) system. The system uses a Mach-Zehnder (MZ) interferometer to interrogate a Fabry-Perot cavity, working as an optical sensor. This algorithm is based on the correlation and convolution operations, which allows the signal to be reconstructed based on itself, as well as, on the linearization of the signal phase, allowing the non-linearities of the actuator incorporated on the MZ interferometer to be compensated. The results show a noise reduction of 30 dB in the signal acquired. As a result, a reduction of 8.2 dB in the uncertainty of the measurement of the physical measurand is achieved. It is also demonstrated that the phase linearization made it possible to obtain a coefficient of determination (namely, R-squared) higher than 0.999.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.