Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

2014

Challenges in Learning from Streaming Data

Authors
Gama, J;

Publication
ADVANCES IN DATABASES AND INFORMATION SYSTEMS (ADBIS 2014)

Abstract

2014

Iterative Weighted Tuning for a Nonlinear Model Predictive Formation Control

Authors
Nascimento, TP; Conceicao, AGS; Moreira, AP;

Publication
2014 IEEE INTERNATIONAL CONFERENCE ON AUTONOMOUS ROBOT SYSTEMS AND COMPETITIONS (ICARSC)

Abstract
A multi-robot system is formed when a group of robots interact with the environment as a single system. This system can also be in formation in order to accomplish tasks rather difficult or impossible to achieve with a single robot. A nonlinear model predictive formation control (NMPFC) was used to converge a group of middle sized mobile soccer robots towards a desired target using the concept of active target tracking. This paper presents a novel approach on formation controller's weight tuning in order to minimize an objective function that reflects the controller's efficiency with respect to a given criteria. Furthermore, the results of simulation and experiment with real robots are presented and discussed.

2014

Maximizing Expectation on Vertex-Disjoint Cycle Packing

Authors
Pedroso, JP;

Publication
COMPUTATIONAL SCIENCE AND ITS APPLICATIONS - ICCSA 2014, PT II

Abstract
This paper proposes a method for computing the expectation for the length of a maximum set of vertex-disjoint cycles in a digraph where vertices and/or arcs are subject to failure with a known probability. This method has an immediate practical application: it can be used for the solution of a kidney exchange program in the common situation where the underlying graph is unreliable. Results for realistic benchmark instances are reported and analyzed.

2014

Joint energy and reserve markets: Current implementations and modeling trends

Authors
Gonzalez, P; Villar, J; Diaz, CA; Alberto Campos, FA;

Publication
ELECTRIC POWER SYSTEMS RESEARCH

Abstract
The continuous penetration of intermittent technologies is gradually reinforcing the technical and economic importance of electricity ancillary services, which are responsible for guaranteeing the reliability and security of the power systems. Generation companies', regulating entities, system operators and other institutions (such as researchers on these fields) are more and more concerned on using market models to forecast most relevant outcomes for particular markets (such as energy and reserves cleared quantities and prices), under different simulation scenarios (such as costs or demand) and under different markets structures (such as more competitive or more oligopolistic). This paper reviews most energy and reserve markets implementations (mainly focusing on reserve types and dispatching methods), and discusses different approaches to model them. A theoretical equilibrium model for energy and reserve markets is also proposed.

2014

Focused ion beam post-processing of optical fiber Fabry-Perot cavities for sensing applications

Authors
Andre, RM; Pevec, S; Becker, M; Dellith, J; Rothhardt, M; Marques, MB; Donlagic, D; Bartelt, H; Frazao, O;

Publication
OPTICS EXPRESS

Abstract
Focused ion beam technology is combined with chemical etching of specifically designed fibers to create Fabry-Perot interferometers. Hydrofluoric acid is used to etch special fibers and create microwires with diameters of 15 mu m. These microwires are then milled with a focused ion beam to create two different structures: an indented Fabry-Perot structure and a cantilever Fabry-Perot structure that are characterized in terms of temperature. The cantilever structure is also sensitive to vibrations and is capable of measuring frequencies in the range 1 Hz - 40 kHz. (C) 2014 Optical Society of America

2014

Real-time control for long ohmic alternate current discharges

Authors
Carvalho, IS; Duarte, P; Fernandes, H; Valcarcel, DF; Carvalho, PJ; Silva, C; Duarte, AS; Neto, A; Sousa, J; Batista, AJN; Hekkert, T; Carvalho, BB; Gomes, RB;

Publication
FUSION ENGINEERING AND DESIGN

Abstract
The ISTTOK tokamak has a long tradition on alternate plasma current (AC) discharges, but the old control system was limiting and lacked full system integration. In order to improve the AC discharges performance the ISTTOK fast control system was updated. This control system developed on site based on the Advanced Telecommunications Computing Architecture (ATCA) standard now integrates the information gathered by all the tokamak real-time diagnostics to produce an accurate observation of the plasma parameters. The real-time actuators were also integrated, allowing a Multiple Input Multiple Output (MIMO) control environment with several synchronization strategies available. The control system software was developed in C++ on top of a Linux system with the Multi-threaded Application Real-Time executor (MARTe) Framework to synchronize the real-time code execution under a 100 mu s control cycle. In addition, to simplify the discharge programming, a visual Human-Machine Interface (HMI) was also developed using the BaseLib2 libraries included in the MARTe Framework. This paper presents the ISTTOK control system and the optimizations that extended the AC current discharges duration to more than 1 s, corresponding to 40 semi-cycles without apparent degradation of the plasma parameters. This upgrade allows ISTTOK to be used as a low-cost material testing facility with long time exposures to nuclear fusion relevant plasmas, comparable (in duration) with medium size tokamaks.

  • 2752
  • 4198