2017
Authors
Carneiro, G; Tavares, JMRS; Bradley, A; Papa, JP; Nascimento, JC; Cardoso, JS; Belagiannis, V; Lu, Z;
Publication
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Abstract
2017
Authors
Leitão, P; Barbosa, J; Geraldes, CAS; Coelho, JP;
Publication
Service Orientation in Holonic and Multi-Agent Manufacturing - Proceedings of SOHOMA 2017, Nantes, France, October 19-20, 2017
Abstract
Multi-stage manufacturing, typical in important industrial sectors, is inherently a complex process. The application of the zero defect manufacturing (ZDM) philosophy, together with recent technological advances in cyber-physical systems (CPS), presents significant challenges and opportunities for the implementation of new methodologies towards the continuous system improvement. This paper introduces the main principles of a multi-agent CPS aiming the application of ZDM in multi-stage production systems, which is being developed under the EU H2020 GO0D MAN project. In particular, this paper describes the MAS architecture that allows the distributed data collection and the balancing of the data analysis for monitoring and adaptation among cloud and edge layers, to enable the earlier detection of process and product variability, and the generation of new optimized knowledge by correlating the aggregated data. © 2018, Springer International Publishing AG.
2017
Authors
Demircioglu, D; Kindermans, M; Nandi, T; Cukuroglu, E; Calabrese, C; Fonseca, NA; Kahles, A; Lehmann, K; Stegle, O; Brazma, A; Brooks, AN; Rätsch, G; Tan, P; Göke, J;
Publication
Abstract
2017
Authors
Soares, T; Jensen, TV; Mazzi, N; Pinson, P; Morais, H;
Publication
WIND ENERGY
Abstract
Proliferation of wind power generation is increasingly making this power source an important asset in designs of energy and reserve markets. Intuitively, wind power producers will require the development of new offering strategies that maximize the expected profit in both energy and reserve markets while fulfilling the market rules and its operational limits. In this paper, we implement and exploit the controllability of the proportional control strategy. This strategy allows the splitting of potentially available wind power generation in energy and reserve markets. In addition, we take advantage of better forecast information from the different day-ahead and balancing stages, allowing different shares of energy and reserve in both stages. Under these assumptions, different mathematical methods able to deal with the uncertain nature of wind power generation, namely, stochastic programming, with McCormick relaxation and piecewise linear decision rules are adapted and tested aiming to maximize the expected revenue for participating in both energy and reserve markets, while accounting for estimated balancing costs for failing to provide energy and reserve. A set of numerical examples, as well as a case study based on real data, allow the analysis and evaluation of the performance and behavior of such techniques. An important conclusion is that the use of the proposed approaches offers a degree of freedom in terms of minimizing balancing costs for the wind power producer strategically to participate in both energy and reserve markets. Copyright (c) 2017 John Wiley & Sons, Ltd.
2017
Authors
Gomes, L; Madeira, A; Barbosa, LS;
Publication
FORMAL METHODS: FOUNDATIONS AND APPLICATIONS, SBMF 2017
Abstract
Kleene algebra with tests (KAT) was introduced as an algebraic structure to model and reason about classic imperative programs, i.e. sequences of discrete actions guarded by Boolean tests. This paper introduces two generalisations of this structure able to express programs as weighted transitions and tests with outcomes in a not necessary bivalent truth space, namely graded Kleene algebra with tests (GKAT) and Heyting Kleene algebra with tests (HKAT). On these contexts, in analogy to Kozen's encoding of Propositional Hoare Logic (PHL) in KAT [10], we discuss the encoding of a graded PHL in HKAT and of its while-free fragment in GKAT.
2017
Authors
Ferreira, MS; Bierlich, J; Kobelke, J; Santos, JL; Frazao, O;
Publication
THIRD INTERNATIONAL CONFERENCE ON APPLICATIONS OF OPTICS AND PHOTONICS
Abstract
A Fabry-Perot interferometer based on an array of soda-lime glass microspheres is proposed for temperature sensing. The microspheres are introduced in a hollow-core silica tube using a tapered fiber tip. After the insertion of each microsphere the sensor is subjected to temperature measurements. The sensor exhibits non-linear behavior and a dependence on the number of microspheres is observed. A maximum sensitivity of 11.13 pm/degrees C is achieved, when there is only one microsphere inside the capillary structure.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.