2016
Authors
Costa, H; Tavares, P; Santos, J; Rio, V; Sousa, A;
Publication
ROBOT 2015: SECOND IBERIAN ROBOTICS CONFERENCE: ADVANCES IN ROBOTICS, VOL 1
Abstract
The increase of the use of Autonomous Vehicles in different types of environments leads to an improvement of the Localization and Navigation algorithms. The goal is to increase the levels of efficiency, security and robustness of the system, minimizing the tasks completion time. The application of cleaning robots in domestic environments have several advantages however some improvements should be performed in order to develop a robust system. Also in large spaces one robot doesn't achieve the desired performance in terms of robustness to faults and efficiency in the cleaning process. Considering a fleet of autonomous robots, this process could be improved. The purpose of our paper is the presentation of an architecture for management a fleet of cleaning robots, considering a complete coverage path planning for large and structured environments. Compartments are found in a grid-like decomposition and an area coverage strategy are evolved (optimized) by using Genetic Algorithms. The Task allocation module is based on Auctions strategy, thus obtaining cooperation under dynamic constraints in complex environments. The case study optimizes the number of robots involved in the cooperative cleaning of a full building in the campus, based on its real architectural plans.
2016
Authors
Morgado, L; Paredes, H; Fonseca, B; Martins, P; Almeida, A; Vilela, A; Peixinho, F; Santos, A;
Publication
JOURNAL OF UNIVERSAL COMPUTER SCIENCE
Abstract
Joining efforts of academic and corporate teams, we developed an integration architecture - MULTIS - that enables corporate e-learning managers to use a Learning Management System (LMS) for management of educational activities in virtual worlds. This architecture was then implemented for the Formare LMS. In this paper we present this architecture and concretizations of its implementation for the Second Life Grid/OpenSimulator virtual world platforms. Current systems are focused on activities managed by individual trainers, rather than groups of trainers and large numbers of trainees: they focus on providing the LMS with information about educational activities taking place in a virtual world and/or being able to access within the virtual world some of the information stored in the LMS, and disregard the streamlining of activity setup and data collection in multi-trainer contexts, among other administrative issues. This architecture aims to overcome the limitations of existing systems for organizational management of corporate e-learning activities.
2016
Authors
Rua, D; Ribeiro, F; Campos, R; Ruela, J; Pecas Lopes, JAP;
Publication
2016 POWER SYSTEMS COMPUTATION CONFERENCE (PSCC)
Abstract
Smart grids aim at ensuring a secure, reliable and efficient operation of power systems and for that purpose they need communications infrastructures capable of meeting different requirements. Current and emerging wireless multi-hop solutions based on standard technologies are strong candidates for communications networks associated and integrated with electric distribution grids but a suitable methodology to evaluate and deploy them is missing. This paper presents a holistic methodology supported by contextual information used to generate different scenarios of distribution grids and to evaluate and deploy wireless communications networks for smart grids. Simulation results show that the methodology is suitable for the evaluation of wireless multi-hop networks in the smart grid context and prove that the performance of such networks meets the expected requirements of different applications.
2016
Authors
Pinto T.; Sousa T.; Morais H.; Praça I.; Vale Z.;
Publication
Electric Power Systems Research
Abstract
Electricity markets are becoming more competitive, to some extent due to the increasing number of players that have moved from other sectors to the power industry. This is essentially resulting from incentives provided to distributed generation. Relevant changes in this domain are still occurring, such as the extension of national and regional markets to continental scales. Decision support tools have thereby become essential to help electricity market players in their negotiation process. This paper presents a metalearner to support electricity market players in bidding definition. The proposed metalearner uses a dynamic artificial neural network to create its own output, taking advantage on several learning algorithms already implemented in ALBidS (Adaptive Learning strategic Bidding System). The proposed metalearner considers different weights for each strategy, based on their individual performance. The metalearner's performance is analysed in scenarios based on real electricity markets data using MASCEM (Multi-Agent Simulator for Competitive Electricity Markets). Results show that the proposed metalearner is able to provide higher profits to market players when compared to other current methodologies and that results improve over time, as consequence of its learning process.
2016
Authors
Eiben, B; Lacher, R; Vavourakis, V; Hipwell, JH; Stoyanov, D; Williams, NR; Sabczynski, J; Buelow, T; Kutra, D; Meetz, K; Young, S; Barschdorf, H; Oliveira, HP; Cardoso, JS; Monteiro, JP; Zolfagharnasab, H; Sinkus, R; Gouveia, P; Liefers, GJ; Molenkamp, B; van de Velde, CJH; Hawkes, DJ; Cardoso, MJ; Keshtgar, M;
Publication
BREAST IMAGING, IWDM 2016
Abstract
Patient-specific surgical predictions of Breast Conserving Therapy, through mechano-biological simulations, could inform the shared decision making process between clinicians and patients by enabling the impact of different surgical options to be visualised. We present an overview of our processing workflow that integrates MR images and three dimensional optical surface scans into a personalised model. Utilising an interactively generated surgical plan, a multi-scale open source finite element solver is employed to simulate breast deformity based on interrelated physiological and biomechanical processes that occur post surgery. Our outcome predictions, based on the pre-surgical imaging, were validated by comparing the simulated outcome with follow-up surface scans of four patients acquired 6 to 12 months post-surgery. A mean absolute surface distance of 3.3mm between the follow-up scan and the simulation was obtained.
2016
Authors
Pinho, LM;
Publication
Ada User Journal
Abstract
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.