2017
Authors
Pinho, TM; Coelho, JP; Veiga, G; Moreira, AP; Boaventura Cunha, J;
Publication
COMPLEXITY
Abstract
Forest biomass has gained increasing interest in the recent years as a renewable source of energy in the context of climate changes and continuous rising of fossil fuels prices. However, due to its characteristics such as seasonality, low density, and high cost, the biomass supply chain needs further optimization to become more competitive in the current energetic market. In this sense and taking into consideration the fact that the transportation is the process that accounts for the higher parcel in the biomass supply chain costs, this work proposes a multilayer model predictive control based strategy to improve the performance of this process at the operational level. The proposed strategy aims to improve the overall supply chain performance by forecasting the system evolution using behavioural dynamic models. In this way, it is possible to react beforehand and avoid expensive impacts in the tasks execution. The methodology is composed of two interconnected levels that closely monitor the system state update, in the operational level, and delineate a new routing and scheduling plan in case of an expected deviation from the original one. By applying this approach to an experimental case study, the concept of the proposed methodology was proven. This novel strategy enables the online scheduling of the supply chain transport operation using a predictive approach.
2017
Authors
Fontes, H; Campos, R; Ricardo, M;
Publication
Proceedings of the Workshop on ns-3, Porto, Portugal, June 13 - 14, 2017
Abstract
A common problem in mobile networking research and development is the cost related to deploying and running real-world mobile testbeds. Due to cost and operational constraints, these testbeds usually run for short time periods but generate very unique and relevant results that are hard to reproduce. We propose the use of ns-3 as a solution to successfully reproduce real-world mobile testbed experiments. This is accomplished by feeding ns-3 with real testbed traces including node positions and radio link quality only. In order to validate our approach, the network throughput between a fixed Base Station and a Unmanned Aerial Vehicle (UAV) was measured in a real-world testbed. The experimental results were compared to the network throughput achieved using the ns-3 trace-based simulation and a plain ns-3 simulation. The obtained results show the high accuracy of the trace-based simulation, thus validating our approach. © 2017 ACM.
2017
Authors
Silva, S; Frazao, O;
Publication
2017 25TH INTERNATIONAL CONFERENCE ON OPTICAL FIBER SENSORS (OFS)
Abstract
This work presents a multimode interference-based fiber sensor in a cavity ring-down system for sensing temperature-induced refractive index (RI) changes of water. The sensing head is based in multimodal interference (MMI) and it was placed inside the fiber loop cavity of the CRD system. A modulated laser source was used to send pulses down into the fiber loop cavity and an erbium-doped fiber amplifier (EDFA) was placed in the fiber ring to provide an observable signal with a reasonable decay time. The behavior of the sensing head to temperature was studied due to its intrinsic sensitivity to said parameter - a sensitivity of -1.6 10(-9) s/C was attained. This allowed eliminating the temperature component from RI measurement of water and a linear sensitivity of 580 mu s/RIU in the RI range of 1.324-1.331 was obtained.
2017
Authors
Cardoso, JM; Coutinho, JGF; Diniz, PC;
Publication
Embedded Computing for High Performance
Abstract
2017
Authors
Duarte, C; Goncalves, F; Ressurreicao, T; Gomes, R; Correia, V; Goncalves, R; Santos, R;
Publication
OCEANS 2017 - ABERDEEN
Abstract
In this work we present a study addressing the load modulation for wireless power transfer in underwater applications. A voltage-mode class-D in a series-series resonance topology is analyzed with simplified equations provided to describe the operation of the wireless power system, including the influence of the load on the primary side. The analysis is validated through simulation results provided for a resistive load modulation using component SPICE models, including the characterization of coupling coils in salt water.
2017
Authors
Fachada, N; Lopes, VV; Martins, RC; Rosa, AC;
Publication
SCIENCE OF COMPUTER PROGRAMMING
Abstract
OpenCL is an open standard for parallel programming of heterogeneous compute devices, such as GPUs, CPUs, DSPs or FPGAs. However, the verbosity of its C host API can hinder application development. In this paper we present cf4ocl, a software library for rapid development of OpenCL programs in pure C. It aims to reduce the verbosity of the OpenCL API, offering straightforward memory management, integrated profiling of events (e.g., kernel execution and data transfers), simple but extensible device selection mechanism and user-friendly error management. We compare two versions of a conceptual application example, one based on cf4ocl, the other developed directly with the OpenCL host API. Results show that the former is simpler to implement and offers more features, at the cost of an effectively negligible computational overhead. Additionally, the tools provided with cf4ocl allowed for a quick analysis on how to optimize the application.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.