2025
Authors
Sousa, MS; Loureiro, ALD; Miguéis, VL;
Publication
EXPERT SYSTEMS WITH APPLICATIONS
Abstract
In today's highly competitive fashion retail market, it is crucial to have accurate demand forecasting systems, namely for new products. Many experts have used machine learning techniques to forecast product sales. However, sales that do not happen due to lack of product availability are often ignored, resulting in censored demand and service levels that are lower than expected. Motivated by the relevance of this issue, we developed a two-stage approach to forecast the demand for new products in the fashion retail industry. In the first stage, we compared four methods of transforming historical sales into historical demand for products already commercialized. Three methods used sales-weighted averages to estimate demand on the days with stock-outs, while the fourth method employed an Expectation-Maximization (EM) algorithm to account for potential substitute products affected by stock-outs of preferred products. We then evaluated the performance of these methods and selected the most accurate one for calculating the primary demand for these historical products. In the second stage, we predicted the demand for the products of the following collection using Random Forest, Deep Neural Networks, and Support Vector Regression algorithms. In addition, we applied a model that consisted of weighting the demands previously calculated for the products of past collections that were most similar to the new products. We validated the proposed methodology using a European fashion retailer case study. The results revealed that the method using the Expectation-Maximization algorithm had the highest potential, followed by the Random Forest algorithm. We believe that this approach will lead to more assertive and better-aligned decisions in production management.
2025
Authors
Oliveira, F; Tinoco, V; Valente, A; Pinho, T; Cunha, JB; Santos, FN;
Publication
PROGRESS IN ARTIFICIAL INTELLIGENCE, EPIA 2024, PT I
Abstract
Pruning consists on an agricultural trimming procedure that is crucial in some species of plants to promote healthy growth and increased yield. Generally, this task is done through manual labour, which is costly, physically demanding, and potentially dangerous for the worker. Robotic pruning is an automated alternative approach to manual labour on this task. This approach focuses on selective pruning and requires the existence of an end-effector capable of detecting and cutting the correct point on the branch to achieve efficient pruning. This paper reviews and analyses different end-effectors used in robotic pruning, which helped to understand the advantages and limitations of the different techniques used and, subsequently, clarified the work required to enable autonomous pruning.
2025
Authors
Marchesi, L; Goldman, A; Lunesu, MI; Przybylek, A; Aguiar, A; Morgan, L; Wang, X; Pinna, A;
Publication
XP Workshops
Abstract
2025
Authors
Costa, L; Barbosa, S; Cunha, J;
Publication
PROCEEDINGS OF THE 3RD ACM CONFERENCE ON REPRODUCIBILITY AND REPLICABILITY, ACM REP 2025
Abstract
Reproducibility in computational science is increasingly dependent on the ability to faithfully re-execute experiments involving code, data, and software environments. However, assessing the effectiveness of reproducibility tools is difficult due to the lack of standardized benchmarks. To address this, we collected 38 computational experiments from diverse scientific domains and attempted to reproduce each using 8 different reproducibility tools. From this initial pool, we identified 18 experiments that could be successfully reproduced using at least one tool. These experiments form our curated benchmark dataset, which we release along with reproducibility packages to support ongoing evaluation efforts. This article introduces the curated dataset, incorporating details about software dependencies, execution steps, and configurations necessary for accurate reproduction. The dataset is structured to reflect diverse computational requirements and methodologies, ranging from simple scripts to complex, multi-language workflows, ensuring it presents the wide range of challenges researchers face in reproducing computational studies. It provides a universal benchmark by establishing a standardized dataset for objectively evaluating and comparing the effectiveness of reproducibility tools. Each experiment included in the dataset is carefully documented to ensure ease of use. We added clear instructions following a standard, so each experiment has the same kind of instructions, making it easier for researchers to run each of them with their own reproducibility tool.The utility of the dataset is demonstrated through extensive evaluations using multiple reproducibility tools.
2025
Authors
Fernandes, FS; Lopes, JP; Moreira, CL;
Publication
INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS
Abstract
This work proposes a robust methodology for the location and sizing of grid forming (GFM) converters that simultaneously considers the solution costs and the security gains while accounting for the TSO nonlinear cost-security sensitivity. Such methodology, which includes a collection of techniques to reduce the problem dimensionality, formulates the placement problem as a non-linear multi-criteria decision support problem and uses a solution-seeking algorithm based on Bayesian Optimisation to determine the solution. To ease comprehension, a modified version of the IEEE 39 Test System is used as a case study throughout the method's detailed explanation and application example. A sensitivity analysis of the GFM converter's over-current capacity in the solution of the formulated placement problem is also performed. The results show that the proposed method is successful in finding solutions with physical meaning and that respect the decision agent preferences.
2025
Authors
Costa, L; Barbosa, S; Cunha, J;
Publication
JOURNAL OF COMPUTER LANGUAGES
Abstract
User studies are paramount for advancing research in software engineering, particularly when evaluating tools and techniques involving programmers. However, researchers face several barriers when performing them despite the existence of supporting tools. We base our study on a set of tools and researcher-reported barriers identified in prior work on user studies in software engineering. In this work, we study how existing tools and their features cope with previously identified barriers. Moreover, we propose new features for the barriers that lack support. We validated our proposal with 102 researchers, achieving statistically significant positive support for all but one feature. We study the current gap between tools and barriers, using features as the bridge. We show there is a significant lack of support for several barriers, as some have no single tool to support them.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.