Cookies Policy
The website need some cookies and similar means to function. If you permit us, we will use those means to collect data on your visits for aggregated statistics to improve our service. Find out More
Accept Reject
  • Menu
Publications

2019

Impact of solar energy on the integrated operation of electricity-gas grids

Authors
Badakhshan, S; Hajibandeh, N; Shafie khah, M; Catalao, JPS;

Publication
ENERGY

Abstract
Photovoltaic energy is one of the clean and efficient energies which has been developing quickly in the last years. As the penetration of solar plants is increasing in the electricity network, new problems have arisen in network operation. This paper models a high penetration factor of solar energy in the electricity network and investigates the impact of solar energy growth on both the generation schedule of different power plants and in the natural gas transmission network. Fuel management of gas power plants is modeled through simulation of the natural gas transmission network. To this end, an increase in the penetration of solar energy in the electricity network inevitably leads to a sudden increase in the output of gas fired units and a linear and integrated model with the electricity and the natural gas transmission networks has been presented to analyze both of them at the same time to better depict the impact of a high penetration of the solar energy in natural gas transmission grids. In this method, natural gas transmission network and Security Constrained Unit Commitment (SCUC) are presented in a single level program. Gas network constraints are linearized and added to the SCUC problem. The stress imposed on the gas network due to a sudden increase in the load of the electricity network is investigated. Conclusions are duly drawn.

2019

Estimation of Vineyard Productivity Map Considering a Cost-Effective LIDAR-Based Sensor

Authors
Moura, P; Ribeiro, D; dos Santos, FN; Gomes, A; Baptista, R; Cunha, M;

Publication
PROGRESS IN ARTIFICIAL INTELLIGENCE, EPIA 2019, PT I

Abstract
Viticulturists need to obtain the estimation of productivity map during the grape vine harvesting, to understand in detail the vineyard variability. An accurate productivity map will support the farmer to take more informed and accurate intervention in the vineyard in line with the precision viticulture concept. This work presents a novel solution to measure the productivity during vineyard harvesting operation realized by a grape harvesting machine. We propose 2D LIDAR sensor attached to low cost IoT module located inside the harvesting machine, to estimate the volume of grapes. Besides, it is proposed data methodology to process data collected and productivity map, considering GIS software, expecting to support the winemakers decisions. A PCD map is also used to validate the method developed by comparison. © Springer Nature Switzerland AG 2019.

2019

Repeatable and Reproducible Wireless Networking Experimentation through Trace-based Simulation

Authors
Lamela, V; Fontes, H; Oliveira, T; Ruela, J; Ricardo, M; Campos, R;

Publication
2019 INTERNATIONAL CONFERENCE ON WIRELESS AND MOBILE COMPUTING, NETWORKING AND COMMUNICATIONS (WIMOB)

Abstract
To properly validate wireless networking solutions we depend on experimentation. Simulation very often produces less accurate results due to the use of models that are simplifications of the real phenomena they try to model. Networking experimentation may offer limited repeatability and reproducibility. Being influenced by external random phenomena such as noise, interference, and multipath, real experiments are hardly repeatable. In addition, they are difficult to reproduce due to testbed operational constraints and availability. Without repeatability and reproducibility, the validation of the networking solution under evaluation is questionable. In this paper, we show how the Trace-based Simulation (TS) approach can be used to accurately repeat and reproduce real experiments and, consequently, introduce a paradigm shift when it comes to the evaluation of wireless networking solutions. We present an extensive evaluation of the TS approach using the Fed4FIRE+ w-iLab.2 testbed. The results show that it is possible to repeat and reproduce real experiments using Network Simulator 3 (ns-3) trace-based simulations with more accuracy than in pure simulation, with average accuracy gains above

2019

Concurrency Debugging with MaxSMT

Authors
Terra Neves, M; Machado, N; Lynce, I; Manquinho, V;

Publication
THIRTY-THIRD AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FIRST INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / NINTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE

Abstract
Current Maximum Satisfiability (MaxSAT) algorithms based on successive calls to a powerful Satisfiability (SAT) solver are now able to solve real-world instances in many application domains. Moreover, replacing the SAT solver with a Satisfiability Modulo Theories (SMT) solver enables effective MaxSMT algorithms. However, MaxSMT has seldom been used in debugging multi-threaded software. Multi-threaded programs are usually non-deterministic due to the huge number of possible thread operation schedules, which makes them much harder to debug than sequential programs. A recent approach to isolate the root cause of concurrency bugs in multi-threaded software is to produce a report that shows the differences between a failing and a non-failing execution. However, since they rely solely on heuristics, these reports can be unnecessarily large. Hence, reports may contain operations that are not relevant to the bug's occurrence. This paper proposes the use of MaxSMT for the generation of minimal reports for multi-threaded software with concurrency bugs. The proposed techniques report situations that the existing techniques are not able to identify. Experimental results show that using MaxSMT can significantly improve the accuracy of the generated reports and, consequently, their usefulness in debugging the root cause of concurrency bugs.

2019

The impact of the digital economy on the skill set of high potentials

Authors
Leite, MP; Mihajlovski, T; Heppner, L; Branco, F; Au Yong Oliveira, M;

Publication
Advances in Intelligent Systems and Computing

Abstract
Hiring outstanding employees is the goal of every company. Digitalization impacted the way companies work and the environment they are surrounded by. Considering this change, employees are facing new challenges for which a concrete skill set is needed. By conducting qualitative interviews, a distinct skill set required by companies was identified. The outcome is that soft skills moved to the forefront, playing a major role when coping with the digital future. In a further step, recommendations for talent management regarding recruitment and development of high potentials are given. With the implementation of technology and the adaption to the human resources perspective, companies will be able to master digital transformation. © Springer Nature Switzerland AG 2019.

2019

Future Perspectives of the Optical Clearing Method

Authors
Oliveira, LMC; Tuchin, VV;

Publication
SpringerBriefs in Physics

Abstract
After making an overview on the most recent progresses regarding the optical immersion treatment technique, we use this chapter to look to the future and perspectives of the following developments and benefits that can be achieved. The increasing number of publications on OC in the last 30 years, which we present in Sect. 9.1, indicates that this is a promising method to aid in the application of optical techniques in clinical practice for diagnosis or treatment purposes. Since several spectroscopy, fluorescence, or imaging methods have recently been used to test and validate the OC effects in various human and animal tissues, a collection of OCAs and OC protocols have been developed. Section 9.2 shows that to get even better results in tissue OC, the discovery of new agents and establishment of new protocols is a work in progress. Section 9.3 indicates the future perspectives for tissue spectroscopy during OC treatment and that the potential of the refractive index matching mechanism can also be evaluated in the ultraviolet range. Section 9.4 discusses the future perspectives of tissue imaging and OC. The establishment of new and faster OC protocols for tissue imaging is suggested, and indication for the necessary efforts to adapt the light-sheet technique to image in vivo is also made. Finally, Sect. 9.5 presents other applications of tissue OC and suggests the cooperation between research fields to increase knowledge in the use of OCAs and their benefits for each field. © 2019, The Author(s), under exclusive license to Springer Nature Switzerland AG.

  • 1372
  • 4136