2025
Authors
Rema, C; Costa, P; Silva, M; Pires, EJS;
Publication
ROBOTICS
Abstract
The advent of Industry 4.0, driven by automation and real-time data analysis, offers significant opportunities to revolutionize manufacturing, with mobile robots playing a central role in boosting productivity. In smart job shops, scheduling tasks involves not only assigning work to machines but also managing robot allocation and travel times, thus extending traditional problems like the Job Shop Scheduling Problem (JSSP) and Traveling Salesman Problem (TSP). Common solution methods include heuristics, metaheuristics, and hybrid methods. However, due to the complexity of these problems, existing models often struggle to provide efficient optimal solutions. Machine learning, particularly reinforcement learning (RL), presents a promising approach by learning from environmental interactions, offering effective solutions for task scheduling. This systematic literature review analyzes 71 papers published between 2014 and 2024, critically evaluating the current state of the art of task scheduling with mobile robots. The review identifies the increasing use of machine learning techniques and hybrid approaches to address more complex scenarios, thanks to their adaptability. Despite these advancements, challenges remain, including the integration of path planning and obstacle avoidance in the task scheduling problem, which is crucial for making these solutions stable and reliable for real-world applications and scaling for larger fleets of robots.
2025
Authors
Teixeira, LF; Montenegro, H; Bonci, E; Cardoso, MJ; Cardoso, JS;
Publication
Artificial Intelligence and Imaging for Diagnostic and Treatment Challenges in Breast Care - Second Deep Breast Workshop, Deep-Breath 2025, Held in Conjunction with MICCAI 2025, Daejeon, South Korea, September 23, 2025, Proceedings
Abstract
Breast cancer locoregional treatment includes a wide variety of procedures with diverse aesthetic outcomes. The aesthetic assessment of such procedures is typically subjective, hindering the fair comparison between their outcomes, and consequently restricting evidence-based improvements. Most objective evaluation tools were developed for conservative surgery, focusing on asymmetries while ignoring other relevant traits. To overcome these limitations, we propose SiameseOrdinalCLIP, an ordinal classification network based on image-text matching and pairwise ranking optimisation for the aesthetic evaluation of breast cancer treatment. Furthermore, we integrate a concept bottleneck module into the network for increased explainability. Experiments on a private dataset show that the proposed model surpasses the state-of-the-art aesthetic evaluation and ordinal classification networks. © 2025 Elsevier B.V., All rights reserved.
2025
Authors
de Souza, JPC; Cordeiro, AJ; Dias, PA; Rocha, LF;
Publication
EUROPEAN ROBOTICS FORUM 2025
Abstract
This article introduces Friday, a Mobile Manipulator (MoMa) solution designed at iiLab - INESC TEC. Friday is versatile and applicable in various contexts, including warehouses, naval shipyards, aerospace industries, and production lines. The robot features an omnidirectional platform, multiple grippers, and sensors for localisation, safety, and object detection. Its modular hardware and software system enhances functionality across different industrial scenarios. The system provides a stable platform supporting scientific advancements and meeting modern industry demands, with results verified in the aerospace, automotive, naval, and logistics.
2025
Authors
Rema, C; Sousa, A; Sobreira, H; Costa, P; Silva, MF;
Publication
2025 IEEE INTERNATIONAL CONFERENCE ON AUTONOMOUS ROBOT SYSTEMS AND COMPETITIONS, ICARSC
Abstract
The rise of Industry 4.0 has revolutionized manufacturing by integrating real-time data analysis, artificial intelligence (AI), automation, and interconnected systems, enabling adaptive and resilient smart factories. Autonomous Mobile Robots (AMRs), with their advanced mobility and navigation capabilities, are a pillar of this transformation. However, their deployment in job shop environments adds complexity to the already challenging Job Shop Scheduling Problem (JSSP), expanding it to include task allocation, robot scheduling, and travel time optimization, creating a multi-faceted, non-deterministic polynomial-time hardness (NP-hard) problem. Traditional approaches such as heuristics, meta-heuristics, and mixed integer linear programming (MILP) are commonly used. Recent AI advancements, particularly large language models (LLM), have shown potential in addressing these scheduling challenges due to significant improvements in reasoning and decision-making from textual data. This paper examines the application of LLM to tackle scheduling complexities in smart job shops with mobile robots. Guided by tailored prompts inserted manually, LLM are employed to generate scheduling solutions, being these compared to an heuristic-based method. The results indicate that LLM currently have limitations in solving complex combinatorial problems, such as task scheduling with mobile robots. Due to issues with consistency and repeatability, they are not yet reliable enough for practical implementation in industrial environments. However, they offer a promising foundation for augmenting traditional approaches in the future.
2025
Authors
Teixeira, J; Klöckner, P; Montezuma, D; Cesur, ME; Fraga, J; Horlings, HM; Cardoso, JS; de Oliveira, SP;
Publication
Deep Generative Models - 5th MICCAI Workshop, DGM4MICCAI 2025, Held in Conjunction with MICCAI 2025, Daejeon, South Korea, September 23, 2025, Proceedings
Abstract
In addition to evaluating tumor morphology using H&E staining, immunohistochemistry is used to assess the presence of specific proteins within the tissue. However, this is a costly and labor-intensive technique, for which virtual staining, as an image-to-image translation task, offers a promising alternative. Although recent, this is an emerging field of research with 64% of published studies just in 2024. Most studies use publicly available datasets of H&E-IHC pairs from consecutive tissue sections. Recognizing the training challenges, many authors develop complex virtual staining models based on conditional Generative Adversarial Networks but ignore the impact of adversarial loss on the quality of virtual staining. Furthermore, overlooking the issues of model evaluation, they claim improved performance based on metrics such as SSIM and PSNR, which are not sufficiently robust to evaluate the quality of virtually stained images. In this paper, we developed CSSP2P GAN, which we demonstrate to achieve heightened pathological fidelity through a blind pathological expert evaluation. Furthermore, while iteratively developing our model, we study the impact of the adversarial loss and demonstrate its crucial role in the quality of virtually stained images. Finally, while comparing our model with reference works in the field, we underscore the limitations of the currently used evaluation metrics and demonstrate the superior performance of CSSP2P GAN. © 2025 Elsevier B.V., All rights reserved.
2025
Authors
Yamamura, F; Scalassara, R; Oliveira, A; Ferreira, JS;
Publication
U.Porto Journal of Engineering
Abstract
Whispers are common and essential for secondary communication. Nonetheless, individuals with aphonia, including laryngectomees, rely on whispers as their primary means of communication. Due to the distinct features between whispered and regular speech, debates have emerged in the field of speech recognition, highlighting the challenge of effectively converting between them. This study investigates the characteristics of whispered speech and proposes a system for converting whispered vowels into normal ones. The system is developed using multilayer perceptron networks and two types of generative adversarial networks. Three metrics are analyzed to evaluate the performance of the system: mel-cepstral distortion, root mean square error of the fundamental frequency, and accuracy with f1-score of a vowel classifier. Overall, the perceptron networks demonstrated better results, with no significant differences observed between male and female voices or the presence/absence of speech silence, except for improved accuracy in estimating the fundamental frequency during the conversion process. © 2025, Universidade do Porto - Faculdade de Engenharia. All rights reserved.
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.