Details
Name
Tânia PereiraRole
Assistant ResearcherSince
01st July 2019
Nationality
PortugalCentre
Telecommunications and MultimediaContacts
+351222074024
tania.pereira@inesctec.pt
2023
Authors
Pereira, T; Cunha, A; Oliveira, HP;
Publication
APPLIED SCIENCES-BASEL
Abstract
2023
Authors
Ribeiro, G; Pereira, T; Silva, F; Sousa, J; Carvalho, DC; Dias, SC; Oliveira, HP;
Publication
APPLIED SCIENCES-BASEL
Abstract
Bone marrow edema (BME) is the term given to the abnormal fluid signal seen within the bone marrow on magnetic resonance imaging (MRI). It usually indicates the presence of underlying pathology and is associated with a myriad of conditions/causes. However, it can be misleading, as in some cases, it may be associated with normal changes in the bone, especially during the growth period of childhood, and objective methods for assessment are lacking. In this work, learning models for BME detection were developed. Transfer learning was used to overcome the size limitations of the dataset, and two different regions of interest (ROI) were defined and compared to evaluate their impact on the performance of the model: bone segmention and intensity mask. The best model was obtained for the high intensity masking technique, which achieved a balanced accuracy of 0.792 +/- 0.034. This study represents a comparison of different models and data regularization techniques for BME detection and showed promising results, even in the most difficult range of ages: children and adolescents. The application of machine learning methods will help to decrease the dependence on the clinicians, providing an initial stratification of the patients based on the probability of edema presence and supporting their decisions on the diagnosis.
2023
Authors
Mendes, J; Pereira, T; Silva, F; Frade, J; Morgado, J; Freitas, C; Negrao, E; de Lima, BF; da Silva, MC; Madureira, AJ; Ramos, I; Costa, JL; Hespanhol, V; Cunha, A; Oliveira, HP;
Publication
EXPERT SYSTEMS WITH APPLICATIONS
Abstract
Biomedical engineering has been targeted as a potential research candidate for machine learning applications, with the purpose of detecting or diagnosing pathologies. However, acquiring relevant, high-quality, and heterogeneous medical datasets is challenging due to privacy and security issues and the effort required to annotate the data. Generative models have recently gained a growing interest in the computer vision field due to their ability to increase dataset size by generating new high-quality samples from the initial set, which can be used as data augmentation of a training dataset. This study aimed to synthesize artificial lung images from corresponding positional and semantic annotations using two generative adversarial networks and databases of real computed tomography scans: the Pix2Pix approach that generates lung images from the lung segmentation maps; and the conditional generative adversarial network (cCGAN) approach that was implemented with additional semantic labels in the generation process. To evaluate the quality of the generated images, two quantitative measures were used: the domain-specific Frechet Inception Distance and Structural Similarity Index. Additionally, an expert assessment was performed to measure the capability to distinguish between real and generated images. The assessment performed shows the high quality of synthesized images, which was confirmed by the expert evaluation. This work represents an innovative application of GAN approaches for medical application taking into consideration the pathological findings in the CT images and the clinical evaluation to assess the realism of these features in the generated images.
2023
Authors
Freitas, P; Silva, F; Sousa, JV; Ferreira, RM; Figueiredo, C; Pereira, T; Oliveira, HP;
Publication
SCIENTIFIC REPORTS
Abstract
Emerging evidence of the relationship between the microbiome composition and the development of numerous diseases, including cancer, has led to an increasing interest in the study of the human microbiome. Technological breakthroughs regarding DNA sequencing methods propelled microbiome studies with a large number of samples, which called for the necessity of more sophisticated data-analytical tools to analyze this complex relationship. The aim of this work was to develop a machine learning-based approach to distinguish the type of cancer based on the analysis of the tissue-specific microbial information, assessing the human microbiome as valuable predictive information for cancer identification. For this purpose, Random Forest algorithms were trained for the classification of five types of cancer-head and neck, esophageal, stomach, colon, and rectum cancers-with samples provided by The Cancer Microbiome Atlas database. One versus all and multi-class classification studies were conducted to evaluate the discriminative capability of the microbial data across increasing levels of cancer site specificity, with results showing a progressive rise in difficulty for accurate sample classification. Random Forest models achieved promising performances when predicting head and neck, stomach, and colon cancer cases, with the latter returning accuracy scores above 90% across the different studies conducted. However, there was also an increased difficulty when discriminating esophageal and rectum cancers, failing to differentiate with adequate results rectum from colon cancer cases, and esophageal from head and neck and stomach cancers. These results point to the fact that anatomically adjacent cancers can be more complex to identify due to microbial similarities. Despite the limitations, microbiome data analysis using machine learning may advance novel strategies to improve cancer detection and prevention, and decrease disease burden.
2023
Authors
Sousa, JV; Matos, P; Silva, F; Freitas, P; Oliveira, HP; Pereira, T;
Publication
SENSORS
Abstract
In a clinical context, physicians usually take into account information from more than one data modality when making decisions regarding cancer diagnosis and treatment planning. Artificial intelligence-based methods should mimic the clinical method and take into consideration different sources of data that allow a more comprehensive analysis of the patient and, as a consequence, a more accurate diagnosis. Lung cancer evaluation, in particular, can benefit from this approach since this pathology presents high mortality rates due to its late diagnosis. However, many related works make use of a single data source, namely imaging data. Therefore, this work aims to study the prediction of lung cancer when using more than one data modality. The National Lung Screening Trial dataset that contains data from different sources, specifically, computed tomography (CT) scans and clinical data, was used for the study, the development and comparison of single-modality and multimodality models, that may explore the predictive capability of these two types of data to their full potential. A ResNet18 network was trained to classify 3D CT nodule regions of interest (ROI), whereas a random forest algorithm was used to classify the clinical data, with the former achieving an area under the ROC curve (AUC) of 0.7897 and the latter 0.5241. Regarding the multimodality approaches, three strategies, based on intermediate and late fusion, were implemented to combine the information from the 3D CT nodule ROIs and the clinical data. From those, the best model-a fully connected layer that receives as input a combination of clinical data and deep imaging features, given by a ResNet18 inference model-presented an AUC of 0.8021. Lung cancer is a complex disease, characterized by a multitude of biological and physiological phenomena and influenced by multiple factors. It is thus imperative that the models are capable of responding to that need. The results obtained showed that the combination of different types may have the potential to produce more comprehensive analyses of the disease by the models.
Supervised Thesis
2022
Author
Joana Vale Amaro de Sousa
Institution
2022
Author
Gonçalo José Marques Ribeiro
Institution
The access to the final selection minute is only available to applicants.
Please check the confirmation e-mail of your application to obtain the access code.